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Introduction to Computer Graphics

-

1.1 Introduction

The computer is an information processing machine. It is a tool for storing,
manipulating and correlating data. There are many ways to communicate the processed
information to the user(The computer graphics is one of the most effective and commonly
used way to communicate the processed information to the user. It displays the information
in the form of graphics objects such as pictures, charts, graphs and diagrams instead of
simple tex_t)Thus we can say that computer graphics makes it possible to express data in
pictorial form. The picture or graphics object may be an engineering drawing, business
graphs, architectural structures, a single frame from an animated movie or a machine parts
illustrated for a service manuglj{lt is the fundamental cohesive concept in computer
graphics. Therefore, it is important to understand -

* How pictures or graphics objects are presented in computer graphics ?

* How pictures or graphics objects are prepared for presentation ?

* How previously prepared pictures or graphics objects are presented ?

* How interaction with the picture or graphics object is accomplished ?

@1 computer graphics, pictures or graphics objects are presented as a collection of
discrete picture elements called
pixels. The pixel is the smallest
addressable screen eleme@lt is the
smallest piece of the display screen
which we can control. The control is
achieved by setting the intensity and
colour of the pixel which compose
the screen. This is illustrated in
Fig. 1.1.

Each pixel on the graphics
display does not  represent
mathematical point. Rather, it
represents a  region  which
theoretically can contain an infinite
number of points. For example, if we
want to display point P; whose
coordinates are (4.2, 3.8) and point P,

Fig. 1.1 Representation of picture

(1



Computer Graphics 2 Introduction to Computer Graphics

whose coordinates are (4.8, 3.1) then P, and P, are represented by only one pixel (4, 3), as
shown in the Fig. 1.2. In general, a point is represented by the integer part of x and integer
part of y, i.e., pixel (int (x), int (y)).

y coordinate 4 5

4
4 TP,
/3 P,,

y pixel row 3 3

p)
1

1
0

o 1 2 3/4 5

. x coordinate 4
x pixel column 2

Fig. 1.2 Pixel display area of 6 x5

The special procedures determine which pixel will provide the best approximation to
the desired picture or graphics object. The process of determining the appropriate pixels for
representing picture or graphics object is known as rasterization, and the process of

representing continuous picture or graphics object as a collection of discrete pixels is called
scan conversion.

The computer graphics allows rotation, translation, scaling and performing various
projections on the picture before displaying it. It also allows to add effects such as hidden
surface removal, shading or transparency to the picture before final representation. It
provides user the control to modify contents, structure, and appearance of pictures or
graphics objects using input devices such as a keyboard, mouse, or touch-sensitive panel on
the screen. There is a close relationship between the input devices and display devices.
Therefore, graphics devices includes both input devices and display devices.

1.2 Image Processing as Picture Analysis

The computer graphics is a collection, combination and representation of real or
imaginary objects from their computer-based models. Thus we can say that computer
graphics concerns the pictorial synthesis of real or imaginary objects. However, the related
field image processing or sometimes called picture analysis concerns the analysis of scenes,
or the reconstruction of models of 2D or 3D objects from their picture. This is exactly the
reverse process. The image processing can be classified as

* Image enhancement

* Pattern detection and recognition

* Scene analysis and computer vision

The image enhancement deals with the improvement in the image quality by
eliminating noise or by increasing image contrast. Pattern detection and recognition deal
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with the detection and clarification of standard patterns and finding deviations from these
patterns. The optical character recognition (OCR) technology is an practical example of
pattern detection and recognition. Scene analysis and computer vision deals with the
recognition and reconstruction of 3D model of scene from several 2D images.

The above three fields of image processing proved their importance in many area such
as finger print detection and recognition, modeling of buildings, ships, automobiles etc., and
SO on.

We have discussed the two fields : computer graphics and "#mage processing of
computer processing of pictures. In the initial stages they were quite separate disciplines.
But now a days they use some common features, and overlap between them is growing.
They both use raster displays. '

I

1.3 The Advantages of Interactive Graphics

Let us discuss the advantages of interactive graphics.

* Today, a high quality graphics displays of personal computer provide one of the most
natural means of communicating with a computer.

* It provides tools for producing pictures not only of concrete, "real-world" objects but
also of abstract, synthetic objects, such as mathematical surfaces in 4D and of data that
have no inherent geometry, such as survey results.

‘ /(t has an ability to show moving pictures, and thus it is possible to produce
animations with interactive graphics.

* With interactive graphics use can also control the animation by adjusting the speed,
the portion of the total scene in view, the geometric relationship of the objects in the
scene to one another, the amount of detail shown and so on.

* The interactive graphics provides tool called motion dynamics. With this tool user
can move and tumble objects with respect to a stationary observer, or he can make
objects stationary and the viewer moving around them. A typical example is walk
throughs made by builder to show flat interior and building surroundings. In many
case it is also possible to move both objects and viewer.

The interactive graphics also provides facility called update dynamics. With update
dynamics it is possible to change the shape, colour or other properties of the objects
being viewed.

-~ With the recent development of digital signal processing (DSP) and audio synthesis
chip the interactive graphics can now provide audio feedback alongwith the
graphical feedbacks to make the simulated environment even more realistic.

In short, interactive graphics permits extensive, high-bandwidth user-computer
interaction. It significantly enhances the ability to understand information, to perceive
trends and to visualize real or imaginary objects either moving or stationary in a realistic
environment. It also makes it possible to get high quality and more precise results and
products with lower analysis and design cost.
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1.4 Applications of Computer Graphics

The use of computer graphics is wide spread. It is used in various areas such as industry,
business, government organisations, education, entertainment and most recently the home.
Let us discuss the representative uses of computer graphics in brief.

* User Interfaces : User friendliness is one of the main factors underlying the success
and popularity of any system. It is now a well established fact that graphical
interfaces provide an attractive and easy interaction between users and computers.

. The built-in graphics provided with user interfaces use visual control items such as

buttons, menus, icons, scroll bar etc, which allows user to interact with computer only

by mouse-click. Typing is necessary only to input text to be stored and manipulated.

* Plotting of graphics and chart : In industry, business, government and educational

7 organisations, computer graphics is most commonly used to create 2D and 3D graphs
of mathematical, physical and economic functions in form of histograms, bars and
pie-charts. These graphs and charts are very useful for decision making.

* Office automation and Desktop Publishing : The desktop publishing on personal
computers allow the use of graphics for the creation and dissemination of
information. Many organisations does the in-house creation and printing of
documents. The desktop publishing allows user to create documents which contain
text, tables, graphs and other forms of drawn or scanned images or pictures. This is
one approach towards the office automation.

* Computer-aided Drafting and Design : The computer-aided drafting uses graphics

to design components and systems electrical, mechanical, electromechanical and

electronic devices such as automobile bodies, structures of building, airplane, ships,
very large-scale integrated (VLSI) chips, optical systems and computer networks.

Simulation and Animation : Use of graphics in simulation makes mathematic

models and mechanical systems more realistic and easy to study. The interactive

graphics supported by animation software proved their use in production of
animated movies and cartoons films.

* Artand Commerce: There is a lot of development in the tools provided by computer
graphics. This allows user to create artistic pictures which express messages and
attract attentions. Such pictures are very useful in advertising.

* Process Control : By the use of computer now it is possible to control various
processes in the industry from a remote control room. In such cases, process systems
and processing parameters are shown on the computer with graphic symbols and
identifications. This makes it easy for operator to monitor and control various
processing parameters at a time.

- * Cartography : Computer graphics is also used to represent geographic maps, weather

maps, oceanographic charts, contour maps, population density maps and so on.

S

1.5 Classification of Applications

In the last section we have seen various uses of computer graphics. These uses can be
classified as shown in the Fig. 1.3. As shown in the Fig. 1.3, the use of computer graphics can
be classified according to dimensionality of the object to be drawn : 2D or 3D. It can also be
classified according to kind -of picture : Symbolic or Realistic. Many computer graphics

-
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applications are classified by the type of interaction. The type of interaction determines the
user’s degree of control over the object and its image. In controllable interaction user can
change the attributes of the images. Role of picture gives the another classification.
Computer graphics is either used for representation or it can be an end product such as
drawings. Pictorial representation gives the final classification of use computer graphics. It
classifies the use of computer graphics to represent pictures such as line drawing, black and
white, colour and so on.

Uses of Computer Graphics

Type of object Type of interaction Pictorial
(Dimensionality) representation

Controllable Non controllabte [ I | |

2D 3D Line Black ~ Colour etc.
drawing and image
white
image
Kind of picture Role of picture
Symbolic Realistic Use for Use as an

representation  end product
such as drawing

Fig. 1.3

1.6 Input Devices

Number of devices are available for data input in the graphics systems. These include
keyboard, mouse, trackball, spaceball, joystick, digitizers, scanners and so on. Let us discuss
them. '

1.6.1 Keyboard

The keyboard is a primary input device for any graphics system. It is used for entering
text and numbers, ie. on graphics data associated with pictures such as labels X-y
coordinates etc.

Keyboards are available in various sizes, shapes and styles. Fig. 1.4 shows standard
keyboard. It consists of

* Alphanumeric key

* Function keys

* Maodifier keys

* Cursor movement keys

* Numeric keypad
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Fig. 1.4

When we press a key on the keyboard, keyboard controller places a code corresponding
to key pressed into a part of its memory, called keyboard buffer. This code is called scan
code. The keyboard controller informs CPU of the computer about the key press with the
help of an interrupt signal. The CPU then reads the scan code from the keyboard buffer, as
shown in the Fig. 1.5.

Keyboard

) Interrupt signal

Keyboard Keyboard
controller buffer Scancode | CPU

Fig. 1.5 Getting the scan code from keyboard

1.6.2 Mouse

A mouse is a palm-sized box used to position the screen cursor. It consists of ball on the
bottom connected to wheels or rollers to provide the amount and direction of movement.
One, two or three buttons are usually included on the top of the mouse for signaling the
execution of some operation. Now-a-days mouse consists of one more wheel on the top to
scroll the screen pages.

9
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(a) Mouse (b} Mouse with scrolling wheel

Fig. 1.6

1.6.3 Trackball and Spaceball

As the name implies, a trackball is a
ball that can be rotated with the fingers or
palm of the hand to produce screen cursor
movement. The potentiometers attached to
the trackball are used to measure the
amount and direction of rotation.

The trackball is a two dimensional
positioning device whereas spaceball
provides six degree of freedom. It does not actually move. It consists of strain guages which
measure the amount of pressure applied to the spaceball to provide input for spatial
positioning and orientation as the ball is pushed or pulled in various directions. It is usually
used in three-dimensional positioning and selecting operations in virtual-reality systems.

1.6.4 Joysticks

A joystick has a small, vertical lever (called the stick) mounted on the base and used to
steer the screen cursor around. It consists of two potentiometers attached to a single lever.
Moving the lever changes the settings on the potentiometers. The left or right movement is
indicated by one potentiometer and forward or back movement is indicated by other
potentiometer. Thus with ajoystick both x and y-coordinate positions can be simultaneously
altered by the motion of a single leVer. This is illustrated in Fig. 1.8.

Fig. 1.7 Trackball

Some joysticks may return to their zero (center) position when released. Joysticks are
inexpensive and are quite commonly used where only rough positioning is needed.

Computer 2 B '
X

(a) Joystick (I (b) Internal details

Fig. 1.8



Computer Graphics 8 Introduction to Computer Graphics

1.6.5 Data Glove

The data glove is used
to grasp a virtual object. The

Flexi ) ] Fig. 1.9 shows the data

exion Tactile-feedback device . .

sensors glove. It is constructed with

Fiber-optics a series of sensors that
cables

detect hand and finger
motions. Each sensor is a
short length of fiberoptic
cable, with a light-emitting
diode (LED) at one end and
a phototransistor at the
other end. The surface of a
cable is roughened in the
area where it is to be
sensitive to bending. When
the cable is flexed, some of
the LED's light is lost, so less
light is received by the
phototransistor.

Glove lining

Interface board

The input from the
glove can be wused to
position or manipulate
objects in a virtual scene. Thus by wearing the dataglove, a user can grasp, move and rotate
objects and then release them.

1 6.6 Digitizer/Graphical Tablet

For applications such as tracing we need a device called a digitizer or a graphical tablet .
[t consists of a flat surface, ranging in size from about 6 by 6 inches up to 48 by 72 inches or
more, which can detect the position of a movable stylus. Fig. 1.10 shows a small tablet with
penlike stylus.

Fig. 1.9

Different graphics tablets use different techniques for measuring position, but they all
resolve the position into a horizontal and a vertical direction, which correspond to the axes
of the display. Most graphics tablets use an
electrical sensing mechanism to determine
the position of the stylus. In one such
arrangement, a grid of wire on 1/4 to 1/2
inch centers is embedded in the tablet
surface. Electromagnetic signals generated
by electrical pulses applied in sequence to
the wires in the grid induce an electrical
signal in a wire coil in the stylus. The
Fig. 1.10 strength of the signal induced by each pulse

Flat
surface
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is used to determine the position of the stylus. The signal strength is also used to determine
roughly how far the stylus or cursor is from the graphical tablet.

Every time user may not wish to enter stylus position into the computer. In such cases
user can lift the stylus or make the tablet off by pressing a switch provided on the stylus.

Other graphical tablet technologies use sound (sonic) coupling and resistive coupling.
The sonic tablet uses sound waves to couple the stylus to microphones positioned on the
periphery of the digitizing area. Sound brust are created by an electrical spark at the tip of
the stylus. The time between when the spark occurs and when its sound arrives at cach
microphone is proportional fo the distance from the stylus to each mi. rophone. The sonic
tablets mainly used in 3D positioning the devices. The resistive tablet uses a battery
powered stylus that emits high-frequency radio signals. The tablet is a piece of glass coated
with a thin layer of conducting material in which an electrical potential is induced by the
radio signals. The strength of the signals at the edges of the tablet is inversely proportional to
the distance to the stylus and can thus be used to calculate the stylus position.

1.6.7 Image Scanners

The scanner is a device, which can be used to store drawing, graphs, photos or text
available in printed form for computer processing. The scanners use the optical scanning
mechanism to scan the information. The scanner records the gradation of gray scales or
colour and stores them in the array. Finally, it stores the image information in a specific file
format such as JPEG, GIF, TIFF, BMP and so on. Once the image is scanned, it can be
processed or we can apply transformations to rotate, scale, or crop the image using image
processing softwares such as photo-shop or photo-paint. Scanners are available in variety of
sizes and capabilities.

Fig. 1.11 shows the working of photoscanner. As shown in the Fig. 1.11, the photograph
is mounted on a rotating drum. A finely collimated light beam is directed at the photo, and
the amount of light reflected is measured by a photocell. As the drum rotates, the light
source slowly moves from one end to the other, thus doing a raster scan of the entire
photograph.

Deflection system

Laser beam 1_—

Light source

Drum with
photo mounted

Light detector

Fig. 1.11 Photoscanner

For coloured photographs, multiple passes are made, using filters in the front of the
photocell to separate out various colours.
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Other type of scanners are electro-optical devices that use arrays of light sensitive charge
coupled devices (CCDs) to turn light reflected from, or transmitted through, artwork,
photographs, slides etc. into a usable digital file composed of pixel information.

The optical resolution and colour depth are the two important specifications of the
scanner. The photoscanners have resolution upto 2000 units per inch. Resolution of the CCD
array is 200 to 1000 units per inch which is less than the photoscanners. The colour depth is
expressed in bits. It specifies the number of colours scanner can capture.

According to construction the scanners also can be classified as :

Flatbed scanners, also called desktop scanners, are the most versatile and commonly
used scanners. In fact, this article focuses on the technology as it relates to flatbed scanners.

Sheet-fed scanners are similar to flatbed scanners except the document is moved and
the scan head is immobile. A sheet-fed scanner looks a lot like a small portable printer.

Handheld scanners use the same basic technology as a flatbed scanner, but relay on the
user to move them instead of a motorized belt. This type of scanner typically does not
provide good image quality. However, it can be useful for capturing an image quickly.

Drum scanners are used by the publishing industry to capture incredibly detailed
images. They use a technology called a photomultiplier tube (PMT). In PMT, the document
to be scanned is mounted on a glass cylinder. Located at the center of the cylinder is a sensor
that splits light bounced from the document into three beams. Each beam is sent through a
colour filter into a photomultiplier tube where the light is changed into an electrical signal.

1.6.8 Touch Panels

As the name implies, touch panels allow displayed objects or screen positions to be
selected with the touch of a finger. The touch panels are the transparent devices which are
fitted on the screen. They consist of touch sensing mechanism. Touch input can be recorded
using optical, electrical or acoustical methods.

Optical touch panels use a line of infrared light emitting diodes along one vertical edge
and along one horizontal edge of the screen. The opposite vertical and horizontal edges
contain light detectors. These detectors are used to record which beams are interrupted
when the panel is touched. The two crossing beams that are interrupted indicate the
horizontal and vertical coordinates of the screen position selected.

In electrical touch panels, two transparent plates are used. These plates are separated by
a small distance. One plate is coated with conducting material and other plate is coated with
resistive material. When outer plate is touched, it is forced to contact with the inner plate.
This contact creates a voltage drop across the resistive plate that is used to determine the
coordinate values of the selected screen position.

An acoustic touch panels use high frequency sound waves in horizontal and vertical
directions across a glass plate. Touching the screen causes partial reflection of each wave
from finger to the emitter. The screen coordinates of point of contact are then calculated by
measuring time between the transmission of each wave and its reflection to the emitter.
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1.6.9 Light Pens

Light pen is a pencil shaped device used to select positions by detecting the light coming
from points on the CRT screen. It consists of a photoelectric cell housed in a pencil like case
as shown in the Fig. 1.12.

N

N
J

Light dependent resistor (LDR)

Fig. 1.12

The light pen may be pointed at the screen. An optical system focuses light on to the
photo cell in the field view of the pen. The pen will send a pulse whenever the phosphor
below it is illuminated. This output of the photo-cell is then amplified and carried over a
shielded cable to light pen interface. A 'detect’ by the light pen can either be used to cause an
immediate interrupt to the computer through an interface or be used to set a flip-flop which
is cleared when read by the computer. Thus, the system can identify the part of the graphics
to which the pen is pointing. It records the co-ordinate position of the electron beam.

Light pen is an event driven device. After displaying each point, one can test the light
pen flip-flop. Thus exact location of the spot to which the light pen is pointing can be
detected. For using light pen for positioning, a tracking program is run on the computer. The
display processor also has the capability to disable the light pen during the refresh cycle.
This ensures the inputs not desired by the operator are ignored. To facilitate the operation of
the light pen, a finger operated switch is provided to control the light reaching the photo cell.

The response time of the pen is also important. For slow displays transistor type photo
cells such as photo diodes are used. These are small, inexpensive and suitable for hand held
operation. The response time is about one microsecond. For the highspeed displays
photo-multiplier tube is used. It is bulky and uses fiber-optic cable.

Now a days improved light pens are available. These consist of a matrix of fibre optic
Sensors.

1.6.10 Voice Systems

Speech recognizers are used in some graphics systems as input devices to accept voice
commands. Such a voice-system input can be used to initiate graphics operations or to enter
data. These systems operate by matching an input with a predefined dictionary of words
and phrases.

The voice recognizers are classified accordings to whether or not they must be trained to
recognize the waveforms of a particular speaker, and whether they can recognize connected
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speech as opposed to single words or phrases. The speaker independent recognizers have
very limited vocabularies. Usually, they include only the digits and 50 to 100 words.

_ The Fig. 1.13 shows the typical voice recognition system. In such systems microphone is
also included to minimize input of other backgrond sounds.

“'Headphone

Microphone

Fig. 1.13

The one advantage of voice system over other devices is that in voice systems the
attention of the operator does not have to be switched from one device to another to enter a
command. '

1.7 Output Devices

The output devices can be classified as display devices and hardcopy devices. Let us see
some of them.

1.7.1 Video Display Devices

The most commonly used output device in a graphics system is a video monitor. The
operation of most video monitors is based on the standard cathode-ray-tube (CRT) design.
Let us see the basics of the CRT.

1.7.1.1 Cathode-Ray-Tubes

A CRT is an evacuated glass tube. An electron gun at the rear of the tube produces a
beam of electrons which is directed towards the front of the tube (screen). The inner side of
the screen is coated with phosphor substance which gives off light when it is stroked by
electrons. This is illustrated in Fig. 1.14. It is possible to control the point at which the
electron beam strikes the screen, and therefore the position of the dot upon the screen, by

deflecting the electron beam. The Fig. 1.15 shows the electrostatic deflection of the electron
beam in a CRT.

D e i,
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Cathode Ray Tube (CRT)

Side view Front view
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Fig. 1.14 Simplified representation of CRT
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Fig. 1.15 Cathode Ray Tube

The deflection system of the cathode-ray-tube consists of two pairs of parallel plates,
referred to as the vertical and horizontal deflection plates. The voltage applied to vertical
plates controls the vertical deflection of the electron beam and voltage applied to the
horizontal deflection plates controls the horizontal deflection of the electron beam. There are

two techniques used for producing images on the CRT screen : Vector scan/random scan
and Raster scan.
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1.7.1.2 Vector Scan/Random Scan Display

As shown in Fig. 1.16, vector scan CRT
display directly traces out only the desired
lines on CRT i.e. If we want a line connecting
point A with point B on the vector graphics
display, we simply drive the beam deflection
circuitry, which will cause beam to go directly
from point A to B. If we want to move the beam
from point A to point B without showing a line
\ , / between points, we can blank the beam as we
move it. To move the beam across the CRT, the

Fig. 1.16 Vector scan CRT information about both, magnitude and

, direction is required. This information is

generated with the help of vector graphics generator.

4 Y

The Fig. 1.17 shows the typical vector display architecture. It consists of display
controller, Central Processing Unit (CPU), display buffer memory and a CRT. A display
controller is connected as an 1/O peripheral to the central processing unit (CPU). The
display buffer memory stores the computer produced display list or display program. The
program contains point and line plotting commands with (x, y) or (x, y, z) end point
coordinates, as well as character plotting commands. The display controller interprets
commands for plotting points, lines and characters and sends digital and point coordinates
to a vector generator. The vector generator then converts the digital coordinate values to
analog voltages for beam-deflection circuits that displace an electron beam writing on the
CRT's phosphor coating.

. In vector displays beam

-l ' CPU" - is deflected from end point

to end point, hence this

technique is also called

= 1/0 Port random scan. We know as

. beam, strikes phosphor it

MOVE i _ . e.mits light. But phosphor

100 1 (Interaction  (Display light decays after few

300 i data)  commands) milliseconds and therefore

'::B‘OE ! l it is necessary to repeat

300 | . _ through the display list to

Cé“é‘\TR i Display controlier CRT refresh ‘the phosphor at

MOVE | least 30 times per second to

100 | avoid flicker. As display

Lm% E Keyboardl  [Mouse buffer is used to store

. display list and it is used for

.o refreshing, the display

IMP--- buffer memory is also
Display buffer memory called refresh buffer.

Fig. 1.17 Architecture of a vector display
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1.7.1.3 Raster Scan Display

The Fig. 1.18 shows the architecture of a raster display. It consists of display controller,
central processing unit (CPU), video controller, refresh buffer, keyboard, mouse and the

CRT.

CPU

/0 port

.

(Interaction data) (Display commands)

Keyboard

000000000000000000000
000000000000000000000
000000000000000000000
000001111111111100000
000001111 111100000
00000111 11100000

Display controller

00000000 00000000
000000000 000000000
000000000111000000000
000000000000000000000
000000000000000000000
000000000000000000000

111
11111
000000000111000000000
01110
111

Refresh buffer

+{ Video controller

3 1

Fig. 1.18 Architecture of a raster display

As shown in the Fig. 1.18, the display image is stored in the form of 1s and 0s in the
refresh buffer. The video controller reads this refresh buffer and produces the actual image
on the screen. It does this by scanning one scan line at a time, from top to bottom and then
back to the top, as shown in the Fig. 1.18.

Raster scan is the most common method of displaying images on the CRT screen. In this

Fig. 1.19 Raster scan CRT

method, the horizontal and vertical deflection
signals are generated to move the beam all over the
screen in a pattern shown in the Fig. 1.19

Here, the beam is swept back and forth from the
left to the right across the screen. When the beam is
moved from the left to the right, it is ON. The beam
is OFF, when it is moved from the right to the left as
shown by dotted line in Fig. 1.19
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When the beam reaches the bottom of the screen, it is made OFF and rapidly retraced
back to the top left to start again. A display produced in this way is called raster scan
display. Raster scanning process is similar to reading different lines on the page of a book.
After completion of scanning of one line, the electron beam flies back to the start of next line
and process repeats. In the raster scan display, the screen image is maintained by repeatedly
scanning the same image. This process is known as refreshing of screen.

In raster scan displays a special area of memory is dedicated to graphics only. This
memory area is called frame buffer. It holds the set of intensity values for all the screen
points. The stored intensity values are retrieved from frame buffer and displayed on the
screen one row (scan line) at a time. Each screen point is referred to as a pixel or pel
(shortened forms of picture element). Each pixel on the screen can be specified by its row
and column number. Thus by specifying row and column number we can specify the pixel
position on the screen.

Intensity range for pixel positions depends on the capability of the raster system. It can
be a simple black and white system or colour system. In a simple black and white system,
each pixel position is either on or off, so only one bit per pixel is needed to control the
intensity of the pixel positions. Additional bits are required when colour and intensity
variations can be displayed. Upto 24 bits per pixel are included in high quality display
systems, which can require several megabytes of storage space for the frame buffer. On a
black and white system with one bit per pixel, the frame buffer is commonly called a bitmap.
For systems with multiple bits per pixel, the frame buffer is often referred to as a pixmap.

Vector Scan Display

Raster Scan Display

. In vector scan display the beam is moved
between the end points of the graphics
primitives.

1. In raster scan display the beam is moved

all over the screen one scan line at a time,
from top to bottom and then back to top.

. Vector display flickers when the number
of primitives in the buffer becomes too
large.

. In raster display, the refresh process is

independent of the complexity of the
image.

. Scan conversion is not required.

. Graphics primitives are specified in terms

of their endpoints and must be scan
converted into their corresponding pixels
in the frame buffer.

. Scan conversion hardware is not required.

. Because  each

primitive  must  be
scan-converted, real time dynamics is far
more computational and requires separate
scan conversion hardware.

. Vector display draws a continuous and
smooth lines.

. Raster display can display mathematically

smooth lines, polygons, and boundaries of
curved primitives only by approximating
them with pixels on the raster grid.

. Cost is more.

6. Cost is low.

. Vector display only draws lines and
characters.

7. Raster display has ability to display areas

filled with solid colours or patterns.

Table 1.1
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Frame Buffer Organization

In raster scan displays a special area of memory is dedicated to graphics only. This
memory area is called frame buffer. It holds the set of intensity values for all the screen

points. The stored intensity values are retrieved from frame buffer and displayed on the
screen one row (scan line) at a time.

Usually, frame buffer is implemented using rotating random access semiconductor
memory. However, frame buffer also can be implemented using shift registers.
Conceptually, shift register is operated as first-in, first-out (FIFO) fashion, i.e. similar to
stack. We know that, when stack is full and if we want to add new data bit then first data bit
is pushed out from the bottom and then the new data bit is added at the top. Here, the data
pushed out of the stack can be interpreted as the intensity of a pixel on a scan line.

Fig. 1.20 shows the implementation of frame buffer using shift register. As shown in the
Fig. 1.20, one shift register is required per pixel on a scan line and the length of shift register
in bits is equal to number of scan lines. Here, there aré 8 pixels per scan line and there are in
all 5 scan lines. Therefore, 8 shift registers, each of 5 bit length are used to implement frame
buffer. The synchronization between the output of the shift register and the video scan rate
is maintained data corresponding to particular scan line is displayed correctly.

4
3 ¢
—_— 2
1 ()
()
0123 45867
Data out Display

Fig. 1.20 Frame buffer using eight 5-bit shift registers

Both rotating memory and shift register frame buffer implementations have low levels
of interactivity. The interactivity in rotating memory is limited due to disk access time and it
is reduced in shift register implementations because changes can only be made as bits are
being added to the register.

Update Refresh ; Pixel ;
CPU »| Frame Display Video

process buffer process |controller] information | monitor

Fig. 1.21 Frame buffer graphics system

Fig. 1.21 shows the frame buffer graphics system. It consists of CPU, frame buffer,
display controller and video monitor. An application program running in the computer
updates the frame buffer as per the picture information. The display controller cycles
through the frame buffer in scan line order (top to bottom) and passes the corresponding
information to the video monitor to refresh the display. The frame buffer can be part. of
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computer memory itself or it can be implemented with separate memory as shown in the
Fig. 1.22.

Host Graphics Main | _| Display § | Video
CPU CPU memory controller monitor
Common bus

(a) Frame buffer as a part of computer memory

Host ) Main
‘CPU " Jmemory
! ] Host system bus
High speed
interface
L Graphics system bus
Graphics Frame -] Display Video
CPU buffer controller monitor

(b) Separate frame buffer
Fig. 1.22 Frame buffer architectures

Generally, separate graphics processor is used to improve the performance of graphics
system. The graphics processor manipulates the frame buffer as per commands issued by
main processor.

The performance of the graphics system is also affected by sharing of single memory
done by two processors. The performance of the graphics system thus can be improved by
having separate frame buffer memory as shown in the Fig. 1.22 (b).

Display File and its Structure

We know that in raster scan displays image information is stored in the frame buffer. It
includes information of all pixels. On the other hand, the vector refresh displays store only
the commands necessary for drawing the line segments. Here, input to the vector generator
is stored instead of the output. The file used to store the commands necessary for drawing
the line segments is called display file.

In vector refresh display system, display processor uses the information in the display
file to draw lines with the help of vector generating algorithms. This is illustrated in Fig.1.23.
Therefore, we can say that display files provides an interface between the image
specification process and the image display process. It also describes image in a compact
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format. The concept of display file may be applied to devices other than refresh displays.
Such files are called pseudo display files, or metafiles.

User I Display Display /
program file processor

Fig. 1.23 Vector refresh display system

The Fig. 1.23 shows the structure of display file. We know that it contains series of
commands. Each display file command contains two fields, an operation code (opcode) and
operands. Opcode identifies the command such as draw line, move cursor etc., and operand
provides the coordinates of a point to process the command.

One way to store opcode and operands of series of commands is to use three separate
arrays. One for operation code, one for operand 1, i.e. x coordinate and one for operand?, i.e.
y coordinate. This is illustrated in Fig. 1.24. The display file stores all commands to be
needed to create a specified image. It is necessary to assign meaning to the possible
operation codes before we can proceed to interpret them. Let us consider three commands
MOVE, LINE and PLOT, and assign opcodes to these commands as shown in table 1.2.

Command Opcode
MOVE 1
LINE 2
PLOT 3
Table 1.2

Once the opcodes are defined we can write commands needed to draw image into the
display file. The following algorithm gives the steps required to insert command in the
display file.

Algorithm

1. Read opcode, x and y coordinates.

2. Search for empty space in the display file. Let i be the empty row.

3. DFE_OP[i} < Opcode;

DF_x [i] “« X;
DF_y [i] < y;
4. Stop

The table 1.3 shows the structure of display file with five commands in it, and Fig. 1.24
shows how these commands are interpreted and plotted.
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DE_OP DF_x DFE_y
Opcode Operand 1 Operand 2
X y
1 30 30
2 50 80
2 70 30
1 40 55
S 2 60 55
Table 1.3 Display file structure
Command1: 1, 30, 30
It moves current cursor position to (30,30)
point (30, 30)
Fig. 1.24 (a)
{50,80)
Command 2: 2, 50, 80
It draws the line between point (50,
80) and the current cursor position (30.30)
(30, 30)
Fig. 1.24 (b)
Command 3: 2, 70, 30 (50.80)
It draws the 1ine between point (70,
30) and the current cursor position
(50, 80) L (30.30) (70.30)
Fig. 1.24 (c)
Command 4: 1, 40, 55 (50,80)
It moves current cursor position to (40.55)
point (40, 55)
(30.30) (70,30)
Fig. 1.24 (d)

Command 5:

2, 60, 55

It draws the line between point (60,
55) and the current cursor position

(40, 55)

(50.,80)

(60,55)

=

—

(70.30)

(40,55)
(30,30)

Fig. 1.24 (e)




Computer Graphics 21 Introduction to Computer Graphics

Display File Interpreter

We have seen that display file contains information necessary to construct the picture.
This information is in the form of commands. The program which converts these commands
into actual picture is called display file interpreter. It is an interface between graphics
representation in the display file and the display device, as shown in the Fig. 1.25.

User Display )
program Interpreter Display

Fig. 1.25 Display file and interpreter

As shown the Fig. 1.25, the display process is divided into two steps : first the image is
stored in the display file structure and then it is interpreted by an appropriate interpreter to
get the actual image.

Instead of this, if we store actual image for particular display device it may not run on
other displays. To achieve the device independence the image is stored in the raw format, i.e.
in the display file format and then it is interpreted by an appropriate interpreter to run on
required display. _

Another advantage of using interpreter is that saving raw image takes much less storage
than saving the picture itseif.

Display Controller

In some graphics systems a separate computer is used to interpret the commands in the
display file. Such computer is known as display controller. Display controller access display
file and it cycles through each command in the display file once during every refresh cycle
Fig. 1.26 shows the vector scan system with display controller.

System Display -
CPU memory processor Monitor
System bus
I/O devices

Fig. 1.26 Vector scan system
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In the raster scan display systems, the purpose of display controller is to free the CPU
from the graphics routine task. Here, display controller is provided with separate memory
area as shown in the Fig. 1.26. The main task of display controller is to digitize a picture
definition given in an application program into a set of pixel-intensity values for storage in
the frame buffer. This digitization process is known as scan conversion.

Display controller are also designed to perform a number of additional operations.
These operations include

* Generating various line styles (dashed, dotted, or solid)

* Display colour areas ’ )

* Performing certain transformations and

* Manipulations on displayed objects

Display .
processor f;raf;ne V'?eﬁ
memory uffer controller

- Monitor

Display System
CPU processor memory

]

System bus

/0 devices

Fig. 1.27 Raster scan system with a display processor
1.7.1.4 Colour CRT Monitors

A CRT monitor displays colour pictures by using a combination of phosphors that emit
different-coloured light. It generates a range of colours by combining the emitted light from
the different phosphors. There are two basic techniques used for producing colour displays:

* Beam-penetration technique and

* Shadow-mask technique
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Beam-penetration Technique

This technique is used with random-scan monitors. In this technique, the inside of CRT
screen is coated with two layers of phosphor, usually red and green. The displayed colour
depends on how far the electron beam penetrates into the phosphor layers. The outer layer is
of red phosphor and inner layer is of green phosphor. A beam of slow electrons excites only
the outer red layer. A beam of very fast electrons penetrates through the red layer and
excites the inner green layer. At intermediate beam speeds, combinations of red and green
light are emitted and two additional colours, orange and yellow displayed. The beam
acceleration voltage controls the speed of the electrons and hence the screen colour at any
point on the screen.

Merits and Demerits

+ Itis an inexpensive technique to produce colour in random scan monitors.
* It can display only four colours.

* The quality of picture produced by this technique is not as good-as compared to
other techniques.

Shadow Mask Technique

The shadow mask technique produces a much wider range of colours than the beam
penetration fechnique. Hence this technique is commonly used in raster-scan displays -
including colour TV. In a shadow mask technique, CRT has three phosphor colour dots at
each pixel position. One phosphor dot emits a red light, another emits a green light, and the
third emits a blue light. The Fig. 1.28 shows the shadow mask CRT. It has three electron
guns, one for each colour dot, and a shadow mask grid just behind the phosphor coated
screen.

Electron
guns

Selection
of shadow mask

Magnified
phosphor-dot
[ triangle

Fig. 1.28

The shadow mask grid consists of series of holes aligned with the phosphor dot pattern.
As shown in the Fig. 1.28, three electron beams are deflected and focused as a group onto the
shadow mask and when they pass through a hole in the shadow mask, they excite a dot
triangle. A dot triangle consists of three small phosphor dots of red, green and blue colour.
These phosphor dots are arranged so that each electron beam can activate only its
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corresponding colour dot when it passes through the shadow mask. A dot triangle when
activated appears as a small dot on the screen which has colour of combination of three small
dots’in the dot triangle. By varying the intensity of the three electron beams we can obtain
different colours in the shadow mask CRT.

1.7.1.5 Direct-view Storage Tubes

We know that, in raster scan display we do refreshing of the screen to maintain a screen
image. The direct-view storage tubes give the alternative method of maintaining the screen
image. A direct-view storage tube (DVST) uses the storage grid which stores the picture
information as a charge distribution just behind the phosphor—éoated screen.

= K

Flood e'lectrons
Focusing and
deflection system

Flood gun

-+———— Screen

Primary gun

Writing beam

- Storage grid
Collector

Fig. 1.29 Arrangement of the DVST

The Fig. 1.29 shows the general arrangement of the DVST. It consists of two electron
guns: a primary gun and a flood gun.

A primary gun stores the picture pattern and the flood gun maintains the picture
display.

A primary gun produces high speed electrons which strike on the storage grid to draw
the picture pattern. As electron beam strikes on the storage grid with high speed, it knocks
out electrons from the storage grid keeping the net positive charge. The knocked out
electrons are attracted towards the collector. The net positive charge on the storage grid is
nothing but the picture pattern. The continuous low speed electrons from flood gun pass
through the control grid and are attracted to the positive charged areas of the storage grid.
The low speed electrons then penetrate the storage grid and strike the phosphor coating
without affecting the positive charge pattern on the storage grid. During this process the
collector just behind the storage grid smooths out the flow of flood electrons.
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Advantages of DVST

1. Refreshing of CRT is not required.

2. Because no refreshing is required, very complex pictures can be displayed at very
high resolution without flicker.

3. It has flat screen.

Disadvantages of DVST
1. They do not display colours and are available with single level of line intensity.

2. Erasing requires removal of charge on the storage grid. Thus erasing and redrawing
process takes several seconds. '

3. Selective or part erasing of screen is not possible.

4. Erasing of screen produces unpleasant flash over the entire screen surface which
prevents its use of dynamic graphics applications.

5.Ithas poor contrast as a result of the comparatively low accelerating potential applied
to the flood electrons. ’

6. The performance of DVST is some what inferior to the refresh CRT.
1.7.1.6 Flat Panel Displays

The term flat-panel display refers to a class of video devices that have reduced volume,
weight, and power requirements compared to a CRT. The important feature of flat-panel
display is that they are thinner than CRTs. There are two types of flat panel displays :
emissive displays and nonemissive displays.

Emissive displays: They convert electrical energy into light energy. Plasma
panels, thin-film electro luminescent displays, and light emitting diodes are examples
of emissive displays.

Nonemissive displays : They use optical effects to convert sunlight or light from
some other source into graphics patterns. Liquid crystal display is an example of
nonemissive flat panel display.

1.7.1.7 Plasma Panel Display

Plasma panel display writes images on the display surface point by point, each point
remains bright after it has been intensified. This makes the plasma panel functionally very
similar to the DVST eventhough its construction is markedly different.

The Fig. 1.30 shows the construction of plasma panel display. It consists of two plates of
glass with thin, closely spaced gold electrodes. The gold electrodes are attached to the inner
faces and covered with a dielectric material. These are attached as a series of vertical
conducting ribbons on one glass plate, and a set of horizontal ribbons to the other glass plate.
The space between two glass plates is filled with neon-based gas and sealed. By applying
voltages between the electrodes the gas within the panel is made to behave as if it were
divided into tiny cells, each one independent of its neighbours. These independent cells are
made to glow by placing a firing voltage of about 120 volts across it by means of the
electrodes. The glow can be sustained by maintaining a high frequency alternating voltage
of about 90 volts across the cell. Due to this refreshing is not required.
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Fig. 1.30 Construction of plasma panel display
Advantages
1. Refreshing is not required.

2. Produces a very steady image, totally free of flicker.
3. Less bulky than a CRT.

4. Allows selective writing and selective erasing, at speed of about 20 usec per cell.

5. It has the flat screen and is transparent, so the displayed image can be superimposed
with pictures from slides or other media projected through the rear panel.

Disadvantages
1. Relatively poor resolution of about 60 dots per inch.
2. It requires complex addressing and wiring.
3. Costlier than the CRTs.
1.7.1.8 Liquid Crystal Monitors

The term liquid crystal refers to the fact that these compounds have a crystalline
arrangement of molecules, yet they flow like a liquid. Flat panel displays commonly use

nematic (thread like) liquid-crystal compounds that tend to keep the long axes of the rod-
shaped molecules aligned. ‘

Two glass plates, each containing a light polarizer at right angles to the other plate
sandwich the liquid-crystal material. Rows of horizontal transparent conductors are built
into one glass plate, and columns of vertical conductors are put into the other plate. The
intersection of two conductors defines a pixel position. In the ON state, polarized light
passing through material is twisted so that it will pass through the opposite polarizer. It is
then reflected back to the viewer. To turn OFF the pixel, we apply a voltage to the two
intersecting conductors to align the molecules so that the light is not twisted as shown in the
Fig. 1.31. This type of flat panel device is referred to as a passive matrix LCD.
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Fig. 1.31

1.7.1.9 Important Characteristics of Video Display Devices

Persistence :

Resolution :

The major difference between phosphors is their persistence. It decides
how long they continue to emit light after the electron beam is
removed. Persistence is defined as the time it takes the emitted light
from the screen to decay to one-tenth of its original intensity. Lower
persistence phosphors require higher refreshing rates to maintain a
picture on the screen without flicker. However it is useful for
displaying animations. On the other hand higher persistence phosphors
are useful for displaying static and highly complex pictures.

Resolution indicates the maximum number of points that can be
displayed without overlap on the CRT. It is defined as the number of
points per centimeter that can be plotted horizontally and vertically.

Resolution depends on the type of phosphor, the intensity to be
displayed and the focusing and deflection systems used in the CRT.
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Aspect Ratio: It is the ratio of vertical points to horizontal points to produce equal
length lines in both directions on the screen. An aspect ratio of 4/5
means that a vertical line plotted with four points has the same length
as a horizontal line plotted with five points.

1.7.2 Hardcopy Devices

We can obtain hard-copy output for our image in several formats using printer or
plotter. Therefore, printers and plotters are also called hard-copy devices. The quality of
pictures obtained from a hard-copy device depends on dot size and the number of dots per
inch, or lines per inch, that can be printed, i.e. it depends on the resolution of printer or
plotter. Before going.to see working principle of various plotters and printers we see the
important characteristics of hardcopy devices.

1.7.2.1 Important Characteristics of Hardcopy Devices

Dot Size : It is the diameter of a single dot on the device's output. It is
also referred to as spot size.

Addressability: It is the number of individual dots (not  necessarily
distinguishable) per inch that can be created. If the address of
current dot is (x, y), then address of next dot in the horizontal
direction is given as (x+1, y). Similarly, the address of next dot
in vertical direction is (x, y+1).

Interdot distance : It is the reciprocal of addressability. If addressability is large
the interdot distance is less. The interdot distance should be less
to get smooth shapes, as shown in the Fig. 1.32.

(a) Interdot spacing (b) Interdot spacing  (c) Interdot spacing (d) Interdot spacing
equal to dot size one half dot size one-thrid dot size one-quarter dot size
Fig. 1.32
Resolution : It is the number of distinguishable lines per inch that a device

can create. It depends on a dot size and the cross-sectional
intensity distribution of a spot. A spot with sharply delineated
edges yields higher resolution than does one with edge that trail
off, as shown in the Fig. 1.33.
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1.7.2.2 Printers

Printers can be classified according to their printing methodology : Impact printers and
Non-impact printers. Impact printers press formed character faces against an inked ribbon
onto the paper. A line printer and dot matrix printer are the examples of an impact printers.
Non impact printers and plotters use laser techniques, ink-jet sprays, xerographic processes,
electrostatic methods, and electrothermal methods to get images onto the paper. An ink-jet
printer and laser printer are the examples of non-impact printers.

Line Printers

A line printer prints a complete line at a time. The printing speed of line printer vary
from 150 lines to 2500 lines per minute with 96 to 100 characters on one line. The line printers
are divided into two categories : Drum printers and chain printer.

Drum Printers

A drum printers consists of a cylindrical drum. One complete set of characters is
embossed on all the print positions on a line, as shown in the Fig. 1.34. The character to be
printed is adjusted by rotating drum.

Ribbon

Signal synchronized hammers

Paper

Print cylinder

Fig. 1.34 Cylinder of a drum printer
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The codes of all characters to be printed on line are transmitted from the memory of the
computer to a printer memory, commonly known as printer buffer. This printer buffer can
store 132 characters. A print drum is rotated with high speed and when printer buffer
information matches with the drum character, character is printed by striking the hammer.
Thus to print one line drum has to rotate one full rotation. A carbon ribbon and paper are in
between the hammer and the drum therefore when hammer strikes the paper an impression
is made on the backside of the paper by the ribbon mounted behind the paper. In drum
printers to get good impression of the line on paper it is necessary to synchronize the
movements of drum and the hammer.

Chain Printers

In these printers chain with embossed character set'is used, instead of drum. Here, the
character to be printed is adjusted by rotating chain. To print line, computer loads the code
of all characters to be printed on line into print buffer. The chain rotated and when character
specified in the print buffer appears in front of hammer, hammer strikes the carbon ribbon.
A carbon ribbon is placed between the chain, paper and hammer. In this printer to get good
printing quality the movement of hammer and chain must be synchronized.

Dot Matrix Printers

Dot matrix printers are also called serial printers as they print one character at a time,
with printing head moving across a line. In dot matrix printer the print head consists of a
9x7 array of pins. As per the character definition pin are moved forward to form a character
and they hit the carbon ribbon in front of the paper thereby printing that character, as shown
in Fig. 1.35.

Dot matrix printhead

° Solenoid
© Paper
g Print wires
o o o]
-3 o
° (<)
‘; 0
ihbon
o R‘bbo (o]
° o
o
o
o
o . N
° Print wires

Fig. 1.35
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In these printers character definition can be changed to get different font as shown in the

Fig. 1.36. <%
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(a) Dot pattern for A (b) Dot pattern for A
Fig. 1.36

An other advantage of dot matrix printers is that they can print alphabets other than
English, such as Devangari, Tamil etc.

Comparison between line printer and dot matrix printer

Line printer Dot matrix printer
1) |Prints one line at a time. Prints a character at a time.
2) |Characters are embossed on the drum or Characters are formed by combination of
chain. dots.

3) |Characters can not be printed with different | Characters can be printed with various
fonts. fonts.

Poor printing quality as characters are

4 . . .
)| Better printing quality. formed by combination of dots.

5) |Better printing speed. Poor printing speed.
6) |Heavy duty printers. Light duty printers.
Ink Jet Printer

An ink-jet printer places extremely small droplets of ink onto paper to create an image. If
we ever look at a piece of paper that has come out of an ink-jet printer, we know that : the
dots are extremely small (usually between 50 and 60 microns in diameter), so small that they
are thinner than the diameter of a human hair (70 microns). The dots are positioned very
precisely, with resolutions of up to 1440 x 720 dots per inch (dpi). The dots can have different
colours combined together to create photo-quality images.
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Ink jet printers print directly on paper by spraying ink through tiny nozzles as shown in
the Fig. 1.37.

Sprayed Ink
forms character

Nozzel Ink fountain
Horizontal Vertical
places plates

Electrical charged
plate control direction
of ink jet spray

Fig. 1.37 Ink jet printer

As shown in the Fig. 1.37, the ink is deflected by an electric field with the help of
horizontal and vertical charged plates to produce dot matrix patterns.

Features of ink-jet printer
L. They can print from two to four pages per minute
2. Resolution is about 360 dots per inch, therefore better printing quality is achieved.

3. The operating cost is quite low, the only part that needs replacement is the ink
cartridge .

4. Colour ink jet printers have four ink nozzles with colours cyan, magenta, yellow and
black, because it is possible to combine these colours to create any colour in the
visible spectrum.

Laser Printer

The line, dot matrix, and ink jet printers need a head movement on a ribbon to print
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then transferred to the paper which comes in contact with the drum with pressure and heat,
as shown in the Fig. 1.38. The charge on the drum decides the darkness of the print. When
charge is more, more ink is attracted and we get a dark print.

S A

Output Paper path

Tray
Paper is given
a static charge
Magical roller
\’oapel_
} L

Fig. 1.38 Laser-printer

Stack of
paper in
input tray

A colour laser printer works like a single colour laser printer; except that the process is
repeated four times with four different ink colours : Cyan, magenta, yellow and black. Laser
printers have high resolution from 600 dots per inch upto 1200 dots per inch. These printers
print 4 to 16 page of text per minute. The high quality and speed of laser printers make them
ideal for office environment.

Advantages of Laser printer

The main advantages of laser printers are speed, precision and economy. A laser can
move very quickly, so it can "write" with much greater speed than an ink-jet. Because the
laser beam has an unvarying diameter, it can draw more precisely, without spilling any
excess ink. Laser printers tend to be more expensive than ink-jet printers, but it doesn't cost
as much to keep them running. Its toner power is cheap and lasts for longer time.

Thermal Transfer Printer

In thermal transfer printer, wax paper and plain paper are drawn together over the strip
of heating nibs. The heating nibs are selectively heated to cause the pigment transfer. In case
of colour thermal transfer printers, the wax paper is placed on a roll of alternating, cyan,
magenta, yellow and black strips, each of a length equal to the paper size. It is possible to
create one colour hardcopy with less than 1 minute. This is possible because the material
used to manufacture nib heats and cools very rapidly. Morden thermal transfer printers
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accept a video signal and digital bitmap input, making them convenient for creating
hardcopy of video images.

1.7.2.3 Plotters
Pen plotter

Pen plotter is an example of a hard-copy output device that does not use the raster-scan
approach. The plotter uses random scan approach, in which a pen is steered over a piece of
paper according to motion instruction issued by the computer. Then pen can be lowered on

to the paper, so that it leaves a trace, or it can be raised in order to reposition the pen without
drawing. '

Generally, plotters use two motors to move a

y Stepping motor penin x and y directions. Some plotters move the
ﬁ paper in one direction and pen in an orthogonal
direction. The colour plotters are constructed
using multiple pens or alternatively a single pen
holder and a mechanical pen loader that can select
one of several pens from a stable of pens.

For drawing the desired shape, some plotters
move the pen in a series of small, incremental
motions in one of the eight directions, while others
use a servomechanism to move the pen in a
smooth path. Many plotters have controllers built
into them that perform computations necessary to
approximate geometrical shapes.

Fig. 1.39

Flat bed plotter

In flat bed plotter pen moves in x and y direction on a sheet of paper spread out on the
table and held down by electrostatic charge, by vaccum, or simply by being stretched
tightly, as shown in the Fig. 1.40.

Carriage
/movement \
< = —

Pen
. movement

Fig. 1.40
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- As shown in the Fig. 1.40, carriage moves longitudinally over the table. On the carriage
pen is mounted and it is moved latitudinally along the carriage. The pen is lowered to draw
lines and it is lifted up during only movement. Flat bed plotters are available in sizes from 12
by 18 inches to 6 by 10 feet and larger.

Drum Plotter

Drum plotters move the paper along one axis and pen along the other axis, as shown in
the Fig. 1.41. Normally, the paper is stretched tightly across a drum and pins on the drum
engage the prepunched holes in the paper to prevent slipping.
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Fig. 1.41 Drum plotter

Drum plotters provide facility to move paper forward and backward, as per
requirement.

Electrostaﬁc Plotter

Bath of Electrostatic plotter places a

f“sPe”ded negative charge on those parts
ner .

p?arﬁcles of a white paper that are to be

black, then moves positively
charged black toner across the

— paper, as shown in Fig. 1.42. The

paper .

movement positively charged black toner

attracts towards negative charge

on paper and adhere there.

The electric contacts are used to deposite negative charge on the paper. Normally these
contacts are constructed with a comb like structure and placed on the paper. Each contact is
either on to impart a negative charge or off to impart no charge. Each dot on an electrostatic
plot is either black or white; gray levels must be created with dither patterns. In dithering
technique we can create an apparent increase in the number of available gray levels. This is
achieved by incorporating multiple pixels positions to draw each intensity value. When we
view a very small area from a sufficiently large viewing distance, our eyes average fine
details with in the small area and record only the overall intensity of the area.

Electric
contacts

Fig. 1.42
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Important Features of Electrostatic Plotters
* Electrostatic plotters are faster than pen plotters and very high quality printers.
* Recent electrostatic plotters include a scan conversion capability.

Colour electrostatic plotters are available. They make multiple passes over the paper
to plot colour pictures or use multiple heads to deposit all the colours in a single pass.
1.7.2.4 Cameras

’

Camera is also considered as a

Motor to .
rotate colour Colour CRT hardcopy device. It photographs
Camera wheel " an image displayed on a television

or CPU monitor. It records the
image on the colour film using
film recorder. The film recorder
-captures the image in the form of a
raster video signal, a bitmap or
vector-style instructions. The
resolution of image is depend on
the screen resolution. The film
recorder uses a raster scan
technique to record the image displayed on the CRT. The film recorders use colour filters to
record colour images, as shown in the Fig. 1.43.

Colour wheel

Fig. 1.43 Colour photograph recording using colour filters

Once the image is recorded in the film recorder, it is exposed to light of a specific colour
to get it printed on a paper. The recently developed Cycolour technique use the paper,
which is embeded with millions of microcapsules filled with one of the three coloured
dyes-cyan, magenta, or yellow. These capsules harden selectively when exposed to light of a
specific colour. For example, when exposed to red light, chemicals in the cyan-filled
capsules cause that capsule to harden. With hardened cyan filled capsules when this paper
passed through pressure rollers and pressed against a sheet of paper only unhardened
capsules (magenta and yellow) break. The breaking of unhardened capsules (magenta and

yellow) cause mixing of colours between them and the mixed colour (red) is transferred to
the plain paper.

1.7.2.5 Comparison of Various Monochrome Hardcopy Devices

Parameters Dot Ink Jet Thermal Laser Pen Electro-static| Photo
Matrix | Printer Printer Printer | Plotter Plotter
Printer
Intensity levels 2 2 2 2 ) 2 Many
per dot
Addressability upto 250 | upto 360 upto 200 | upto 1500| Atleast upto 400 upto 800
(points per 1000
inch)
Dot size 10-18 8-16 7.0 | 5 6-15 8 6-18
(thousandths

of inch)
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Relative

Verylow| Low |Low-Medium| High | Medium |Medium-High| Medium
purchase cost '

Relative Very low | Medium |[Medium-High| Medium | Low |Medium-High| High
printing cost

Image quality Poor Better Better Best Good Better Best
Speed Low Medium Medium High Very low High Very low

1.7.2.6 Comparison of Various Colour Hardcopy Devices

Parameters Dot Ink Jet | Thermal | Laser Pen |Electro-static Photo
Matrix | Printer | Printer | Printer | Plotter | Plotter
Printer '
Intensity levels 8 8-many | 8-many 8 uptol6 8 Many
per dot
Addressability | ,pto250 | upto360 | upto200 |upto 1500 Atleast upto 400 upto 800
(points per 1000
inch)
Dot size 10-18 8-16 7-10 5 6-15 8 . 6-18
(thousandths of
inch)
Relative Very low Low Medium | High |Medium [Medium-High{Medium-High
purchase cost
Relative Very low | Medium High |Medium{ Low High High
printing cost
Image quality Poor Better Better Best Good Better Best
Speed Low Medium | Medium | High |Very low Medium-High| Very low

1.8 Coordinate Systems

Most of the graphics packages use cartesian coordinate systems. However, in some
applications, non-cartesion coordinate systems such as spherical, cylindrical, or other
symmetries are useful. In this section, we first see standard cartesian coordinate systems and
then we consider a commonly used non cartesian system, polar coordinate system.

1.8.1 Two Dimensional Cartesian Reference System

There are two possible orientations for a cartesian screen reference system, as shown in
the Fig. 1.44. The Fig. 1.44 (a) shows the standard coordinate orientation with the coordinate
origin at the lower-left corner of the screen. In some systems, particularly in personal
computers, coordinate orientation is as shown in Fig. 1.44 (b). In this system, the coordinate
origin is at the upper left corner.
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Fig. 1.44 Screen cartesian reference system

1.8.2 Three Dimensional Cartesian Reference System

There are two types of three dimensional reference system according to the orientation
for the coordinate axes : Right handed system and left handed system. The right handed
system uses the right hand thumb to point the positive z direction when we imagine the
fingers curling from positive x axis to the positive y axis (through 909 grasping the z axis, as
shown in the Fig. 1.45.
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Fig. 1.45

In left handed cartesian coordinate system, the left hand thumb is used to point the
positive z direction when we imagine the fingers of the left hand curl from the positive x axis
to the positive y axis (through 90°) to grasp the z axis, as shown in the Fig. 1.46.
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(b) X

Fig. 1.46

1.8.3 Polar Coordinate System

It is a most commonly used non-cartesian coordinate system. In polar coordinate system
a position is specified with a radial distance r from the coordinate origin, and an angular
displacement 0 from the horizontal, as shown in the Fig. 1.47.

r

/

Fig. 1.47

Counter clockwise displacements are considered as positive angular displacements and
o

clockwise displacements are consider as negative angular displacements. The angle 0 is

measured in degrees.

The Fig. 1.48 shows the relation between polar and cartesian coordinates. It is as
follows :

X = 1cosH, y=rsind
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The inverse transformation from cartesian to polar coordinates is

r = w/x2 +y2, Gztan‘l(lJ

X

X X axis

Fig. 1.48 Relation between polar and cartesian coordinates

1.9 Coordinate Representations

In general, graphics packages are designed to be used with cartesian coordinate
specifications. If coordinate values for a picture are specified in some other reference frame,
they must be converted to cartesian co-ordinates before they can be input to the graphics
packages. Furthermore, we can construct the shape of individual objects, such as trees,
buildings or furniture, in a scene within a separate coordinate reference frames called
modeling coordinates, or local coordinates or master coordinates require coordinate
conversion.

The objects represented in the modeling coordinates are first placed into appropriate
positions within the scene using a reference frame called world coordinates. Then the world
coordinate description of the scene is transferred to one or more output device reference
frames for display. These display coordinates are referred to as device coordinates or screen
coordinates, in case of video monitor. Generally, in a graphic system the world coordinate
positions are first converted into normalized device coordinates, in the range from O to 1,
before final conversion to specific device coordinates. (Refer section 5.2.1 for detail
information on normalized coordinates). This conversion makes the system independent of
the various devices that might be used at a particular workstation. The Fig. 1.49 illustrates
the sequence of coordinate transformations from modeling coordinates to device
coordinates for a two-dimensional application.

Modeling World Normalized Devices
coordinates coordinates coordinates coordinates
(xmc' ymc) (ch' ywc) (ch' ync) (xdc- ydc)

Fig. 1.49
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Solved Examples

Ex.1.1:  Avideo monitor has a display area measuring 12 incl'by 9.6 inch. If the resolution is 1280
by 1024 and the aspect ratio is 1. What is the diameter of eaclt screen point ?

(Dec.-2001)

Sol.: - An aspect ratio of 1 means that a vertical line plotted and horizontal line
plotted with equal number of points have the same length. Therefore the diameter of
each screen point can be given as

d = horizontal display length

horizontal resolution
_ vertical display length

vertical resolution

_£ = 2 =9.375x 10" ¥ inch
1280 1024

Ex. 1.2:  How long it will take to load a 640 by 480 frame buffer with 12 bits per pixel if 10° bits can
be transferred per second ? How long it will take to load a 24-bits per pixel frame buffer
with a resolution of 1280 by 1024 using the same transfer rate ? (Dec-2001)

Sol.: i) Total number of bits required to load the frame buffer with a resolution of
640 x 480 and with 12-bits per pixel can be given as

B = 640x480x 12 = 3.6864 x 10°
Transfer rate is 10° bits/sec,

Therefore, time required to load the frame buffer is

. 10°
T = M = 36.864 seconds
10°
ii) Total number of bits required to load the frame buffer with a resolution of 1280 x 1024
and with 24-bits per pixel can be given as
B = 1280 x 1024 x 24 = 31.45728 x 10°

Transfer rate is 10° bits/sec,

Therefore, time required to load the frame buffer is
31.45728x 10¢

T =
10°
= 314.5728 seconds

Ex.1.3:  What is the fraction of the total refresh time per frame spent in retrace of the electron bean

for a non-interlaced raster system with a resolution of 1280 by 1024, a refreslt rate of

60 Hz, a horizontal retrace time of Susec and a vertical retrace fime of 500 microseconds

(u sec) ? (Dec-99)
Sol.: Total horizontal retrace time = 1024 x 5 x 107 °

Total vertical retrace time = 500 x 10~ °
Total retrace time = 1024 x 5x 107% + 500 x 10" ¢
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- The fraction of the total refresh time per frame spent in retrace of the electron beam can
be given as
Total retrace time 1024 x5x 10 ® +500% 10 °
refresh time 1/60
(.3372
Ex.1.4:  Foran clectrostatic plotter 18-inch-wide paper, a resolution of 200 units to the inch in
each »dir(’c‘ti()u_mn{ a paper speed of 3 inches per second, how many bits per secopd must be
provided to allow the paper to move at full speed ? (Dec-99)

Sol.:  ‘Total dots in the horizontal direction = 18 x 200 = 3600

T =

Total dots in the 3 inch length of paper in one column = 3 x 200 = 600

~Total number of dot information required per second = 3600 x 600
= 216x10°
If we assume 8-bits are required for cach dot, then total number of bits per second
required to plot are given as ' '
B =216x10°x8

17.28 x 10°

Review Questions

1. Discuss on topic image processing as picture analysis.

I

. List the advantages of interactive graphics.

[§%)

. Explain the representative uses of computer graphics.

e

. Explain the classification of use of computer graphics.

Ji

. What do you mean by rasterization ?
6. Define scan conversion.

7. Write a short note on

a) Keyboard b) Mouse

¢) Trackball and spaceball d) Joystick
e) Digitizer f) Light pen
¢) Touch panels h) Scanner

8. Write a short note on
a) Cathode -Ray Tubes
b) Vector scan display
¢) Raster scan display
d) Beam penetration technique
e) Shadow mask technique
9. Explain the working of direct-view storage tubes.

10. List the advantages and disadvantages of DVST.
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11. Write a short note on
a) Flat panel display
b) Plasma panel display
12. List the important characteristics of video display devices .
13. Explain the important characteristics of hard copy devices.
14. Define dot size, addressability, interdot distance and resolution.
15. Give the classification of printers.
16. Explain various types of printers.
17. Give the difference between line printer and dot matric printer.
18. List the features of ink-jet printer. ’
19. Write a short note on laser printer.
20. Explain the principle of thermal transfer printer.
21. Write a short note on pen plotter
22. Write a short note on electrostatic plotter.
23. Write a short note on cameras.
24. Give the comparison between various monochrome and colour hardcopy devices.
25. Explain display file and its structure.
26. What is the role of display file interpreter ?
27. Explain the function of display processor in raster scan and vector scan displays.
28. What is a frame buffer? Explain the organization of frame buffer.
29. Write a shqrt note on coordinate systems.
30. Explain the two dimensional cartesian reference system.
31. Explain the three dimensional cartesian reference system.
32. Explain the polér coordinate system.

33. Write a note an coordinate representations.

University Questions

1. Write detailed note on bit planes and frame buffer organisations.
(Dec-96, Dec-97, May-2000, Dec-2000)

2. Write detailed note on DVST display devices (May-97, Dec-2000)
3. Write detailed note on bit plane organisation. . (May-97, May-2001)
4. Write detail note on storage type CRTs and refresh type CRTs. (May-98)
5. Compare storage against refresh type CRT display. List out the important properties of

phosphor being used in CRTs. {Dec-98)
6. Write short note on plasma panel display (Dec-98)
7. Write short note on Graphical output devices. (May-99)

8. What is refresh buffer? Identify the contents and organization of the refresh buffer for the case
of raster display and vector display. (Dec-99)
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9.

10.

11.

12.

13.

14

15.

16.
17.

18.
19.
20.
21.

Compare and contrast the operating characteristics of raster refresh systems, plasma panels
and LCDs. (Dec-99)

Identify the appropriate applications for each of the display technologies cited in past (as
above) (Dec-99)

What is the fraction of the total refresh time per frame spent in retrace of the electron beam for
a non-interlaced raster system with a resolution of 1280 by 1024, a refresh rate of 60 Hz, a
horizontal retrace time of 5usec and a vertical retrace time of 500 microseconds (i1 sec) ?

{Dec-99)
Ans. : [ (1024 x5 x 107+ 500 x 107)/ (1/60) = 0.3372]

For an electrostatic plotter 18-inch-wide paper, a resolution of 200 units to the inch in each
direction and a paper speed of 3 inches per second, how many bits per second must be
provided to allow the paper to move at full speed ? (Dec-99)

Ans. :[18 x 200 x 3 x 8 (bits per pixel) = 86400]

The light pen is an aging technology with a limited use. Justify this contention. (Dec-99)
. Compare refresh type and storage type CRT display. (May-2000)
Explain the block diagram of raster display system with display processor . Also explain
how the monitor functions in raster display. (May-2001)
Write a short note on bit plane and frame buffer organization. (Dec-2001)
Compare and contrast the operating characteristics of different display technologies.
Identify the appropriate applications for each. (May-2002)
Write a short note on random scan displays. (May-2002)
Write a short note on computer graphics applications (May-2002)
Write a short note on display processors. (May-2002, May-2003)
Illustrate plasma panel display. Give its advantages and disadvantages. " (May-2003)

Qaa




Raster Graphics Algorithms
for Drawing 2-D Primitives

2.1 Introduction

In the previous chapter we have seen that the raster scan graphics devices require
special procedures for displaying graphics objects such as line, circle, polygons, curves and
even characters. In this chapter we will examine the procedures for line, circle and character
generation.

2.2 Basic Concepts in Line Drawing

Before discussing specific line drawing algorithms it is useful to note the general
requirements for such algorithms. These requirements specify the desired characteristics of
line.

* The line should appear as a straight line and it should start and end accurately.

* The line should be displayed with constant brightness along its length independent
of its length and orientation.

* The line should be drawn rapidly.
Let us see the different lines drawn in Fig. 2.1.

Vertical line

— _— 45°line

g o
_

-=— Horizontal
line

(a) Vertical and Horizontal lines (b) 45°line

(45)
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T

9

051

&)
(1)

(c) Line with other orientation
Fig. 2.1

As shown in Fig. 2.1 (a), horizontal and vertical lines are straight and have same width.
The 45° line is straight but its width is not constant. On the other hand, the line with any
other orientation is neither straight nor has same width. Such cases are due to the finite

resolution of display and we have to accept approximate pixels in such situations, shown in
Fig. 2.1 (c).

The brightness of the line is dependent on the orientation of the line. We can observe that
the effective spacing between pixels for the 45° line is greater than for the vertical and
horizontal lines. This will make the vertical and horizontal lines appear brighter than the 45°
line. Complex calculations are required to provide equal brightness along lines of varying
length and orientation. Therefore, to draw line rapidly some compromises are made such as

¢ Calculate only an approximate line length
* Reduce the calculations using simple integer arithmetic
* Implement the result in hardware or firmware

2.3 Line Drawing Algorithms

Considering the assumptions made in the previous section most line drawing
algorithms use incremental methods. In these methods line starts with the starting point.
Then a fix increment is added to the current point to get the next point on the line. This is
continued till the end of line. Let us see the incremental algorithm.

Incremental Algorithm
1. CurrPosition = Start
Step = Increment

2. if (| CurrPosition — End| < Accuracy) then go to step 5
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[ This checks whether the currernt position is reached upto approximate
end point. If yes, line drawing is completed. ]

if (CurrPosition < End) then go to step 3
[Here start < End]
if (CurrPosition > End) then go to step 4
[Here start > End]

3. CurrPosition = CurrPosition + Step

go to step 2

4. CurrPosition = CurrPosition - Step
go to step 2

5. Stop.

s

In the following sections we discuss the line rasterizing algorithms based on the
incremental algorithm.
2.3.1 Digital Differential Analyzer

We know that the slope of a straight line is given as
_ 4y _Y2— ¥

Ax X, —x,

m ... (2.1)

The above differential equation can be used to obtain a rasterized straight line. For any

given x interval Ax along a line, we can compute the corresponding y interval Ay from
equation 2.1 as

Ay = Y270 £y ... (2.2)
X 2= X 1 )
Similarly, we can obtain the x interval Ax corresponding to a specified Ay as
L2 7% Ay ... (23)
Y2—Yi
Once the intervals are known the values for next x and next y on the straight line can be
obtained as follows

Ax =

Xjs1 = X + AX
= xi+x2—x, Ay . (2.4)
Y2 =Y
and Yie1 = it Ay
=y, + Y27V Ax ... (2.5)
X2 =X

The equations 2.4 and 2.5 represent a recursion relation for successive values of x and y
along the required line. Such a way of rasterizing a line is called a digital differential
analyzer (DDA). For simple DDA either Ax or Ay, whichever is larger, is chosen as one
raster unit, i.e.

if | Ax| 2 | Ay]| then
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) Ax =1
else Ay = 1
With this simplification, if Ax = 1 then y
we have Yis1 = Vit Y27 Y1 and
X2 —X
Xjoq = X+ 1
If Ay =1 then
we have
Yi+1 = yi+1land
Xip1 = X+ ———
Y2—Y

Let us see the digital differential analyzer (DDA) routine for rasterizing a line
DDA Line Algorithm
1. Read the line end points (x,, ¥1) and (x,, y,) such that they are not equal.
[ if equal then plot that point and exit]
2. &x=|x-x| and by =|ys -y
3. if(Ax>Ay) then

length = Ax
else

length = Ay
end if

4. Ax=(xy-x,)/length
Ay = (y, —y,)/ length
[This makes either Ax or Ay equal to 1 because length is either Ix2 - x||
or IYZ - YII' Therefore, the incremental value for either x or Y is one.}]
5. x=x; + 0.5 * Sign (Ax)
y =y; + 0.5 * Sign (Ay)
[Here, Sign function makes the algorithm work in all quadrant. It
returns - 1, 0, 1 depending on whether its argument is < 0, = 0, > 0
respectively. The factor 0.5 makes it possible to round the values in
the integer function rather than truncating them. ]
6. i=1 [Begins the loop, in this loop points are plotted]
While (i <length)
{
Plot (Integer (x), Integer (y) )
X=X+A
y=y+4y
i=i+1
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7. Stop
Let us see few examples to illustrate this algorithm.

Ex.2.1:  Consider the line from (0, 0) to (4, 6). Use the simple DDA algorithm to rasterize this line
Sol.: Evaluating steps 1 to 5 in the DDA algorithm we have
x;=0 y1=0
X, =4 y2=6
Length = |y, -y |=6

Ax = |x, -x,|/ length
-4
6
ard Ay = |y, -y,|/ length
=6/6=1
Initial vatue for
x = 0+ 0.5*Sign(%)= 05
y = 0+05%Sign (1) =0.5
Tabulating the results of each iteration in the step 6 we get,
i Plot X y
0.5 0.5
1 0,0)
1.167 15
2 (11
1.833 25
3 (1,2)
25 3.5
4 2.3)
3.167 4.5
5 G4
3.833 55
6 3,5)
4.5 6.5

Table 2.1
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; ()
: ()
o L)
2 L)
e
1@

0 1 2 3 4 5

Fig. 2.2 Result for a simple DDA

The results are plotted as shown in the Fig. 2.2. It shows that the rasterized line lies to
both sides of the actual line, i.e. the algorithm is orientation dependent.

Ex.2.2:  Consider the line from (0, 0) to (- 6, - 6). Use the simple DDA algorithm to rasterize this
line.

Sol.: Evaluating steps 1 to 5 in the DDA algorithm we have
x;=0 y, =0
Xy=— 6 Y,=-6
Length = | x, -xi|=]y, - yi=6
: Ax = Ay =-1

Initial values for

x = 0+05*Sign(-1)=-0.5
y = 0+05#*Sign(-1)=~05
Tabulating the results of each iteration in the step 6 we get,
i Plot b y
-0.5 -05
1 -1,-1)
~15 -15
2 (-2,-2)
-25 -25
3 -3.-3)
~-35 -35
4 (-4,-4)
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-4.5 -45
5 (-5,-5)
-55 -55
6 (-6,-06)
-6.5 -65
Table 2.2

6 -5 -4 -3 2 1

() |2
() -3
() 2
() 5

* —ve pixel values are
with reference to pixel
at the center of screen

-

Fig. 2.3 Result for a simple DDA

The results are plotted as shown in the Fig. 2.3. It shows that the rasten/ed line lies on
the actual line and it is 45° line.

'C' code for DDA Line Drawing Algorithm
(Softcopy of this program is available at vtubooks.com)
#include<stdio.h>
#include<graphics.h>
#include<math.h>
main ()
{
float x,y,x1,yl,x2,y2,dx,dy, length;
int i,gd,gm;

clrscr();

/* Read two end points of line
__________________________________ */‘
printf ("Enter the value of x1 :\t"™);

scanf ("$f", &x1) ;
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printf ("Enter the value of yl :\t");
scanf ("%f", &yl);
printf ("Enter the value of x2 :\t"):
scanf ("3f", &x2);
printf("Enter the value of y2 :\t");
scanf ("$£", &y2) ;

/* Initialise graphics mode

detectgraph (&gd, &gm) ;
initgraph(&gd, &gm, "");

dx=abs (x2-x1) ;
dy=abs (y2-yl);

if (dx >= dy)
{

length = dx;

}

else

{

length = dy;

}
dx = (x2-x1)/length;
dy = (y2-yl)/length;
x = x1 + 0.5; /* Factor 0.5 is added to round the values */
y =yl + 0.5 /* Factor 0.5 is added to round the values */
i=1; - /* Initialise loop counter */

while (i <= length)
{
putpixel(x,y,15);
X = x + dx;
y =yt dy;
i=1i+ 1;

delay(100); /* Delay is purposely inserted to see

observe the line drawing process */




Computer Graphics 53 Raster Graphics Algorithms for Drawing 2-D Primitives

}
gerch();
clozegraph();
}

o

Advantages of DDA Algorithm
1. It is the simplest algorithm and it does not require special skills for implementation.

2. It is a faster method for calculating pixel positions than the direct use of equation
y = mx + b. It eliminates the multiplication in the equation by making use of raster
characteristics, so that appropriate increments are applied in the x or y direction to
find the pixel positions along the line path.

Disadvantages of DDA Algorithm
1. Floating point arithmetic in DDA algorithm is still time-consuming.
2. The algorithm is orientation dependent. Hence end point accuracy is poor.

2.3.2 Bresenham's Line Algorithm

Bresenham’s line algorithm uses only integer addition and subtraction and
multiplication by 2, and we know that the computer can perform the operations of integer
addition and subtraction very rapidly. The computer is also time-efficient when performing
integer multiplication by powers of 2. Therefore, it is an cfficient method for scan-converting
straight lines.

The basic principle of Bresenham's line algorithm is to select the optimum raster
locations to represent a straight line. To accomplish this the algorithm always increments
either x or y by one unit depending on the slope of line. The increment in the other variable is
determined by examining the distance between the actual line location and the nearest pixel.
This distance is called decision variable or the error. This is illustrated in the Fig. 2.4.

As shown in the Fig. 2.4, the
x=1 line does not pass through all raster

l points (pixels). It passes through

L A 1574 s o, * raster point (0, 0) and subsequently
T crosses three pixels. It is seen that

0 ® ot s, . the intercept of line with the line
’ D, - Distance above x =1 is closer to the line y =0, ie

o Dy, - Distance below pixel (1, 0) than to the liney = 1 i.e.
pixel (1, 1). Hence, in this case, the
Fig. 2.4 raster point at (1, 0) better

represents the path of the line than

thatat (1,1). The intercept of the line with the line x = 2 is close to the line y=1,ie pixel (2, 1)

than to the line y =0, i.e. pixel (2, 0). Hence, the raster point at (2, 1) better represents the path
of the line, as shown in the Fig. 2.4

0 ] 2 3

In mathematical terms error or decision variable is defined as
e = Dg~-D, or D,-D,
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Let us define e = Dy — D,. Now if e > 0, then it implies that Dy > D,,, i.e., the pixel above
the line is closer to the true line. If Dy < D, (i.e. e < 0) then we can say that the pixel below the
line is closer to the true line. Thus by checking only the sign of error term it is possible to
determine the better pixel to represent the line path.

The error term is initially set as

e = 2Ay-Ax
where Ay =y,-y,;, and Ax = X, - X;
Then according to value of e following actions are taken.
while (e > 0)
{

y=y+1
e=e—-2*Ax
}
x=x+1
e=e+2*Ay

When e > 0, error is initialized with e = e - 2 Ax. This is continued till error is negative. In
eachiteration y is incremented by 1. When e <0, error is initialized to e = e + 2 Ay. In both the
cases X is incremented by 1. Let us see the Bresenham's line drawing algorithm.

Bresenham's Line Algorithm

1. Read the line end points (x,, y;) and (x5, y,) such that they are not equal.
[ if equal then plot that point and exit ]

2. M=|x-x| and Ay=|y,-y|

3. [Initialize starting point]
X=X
Y=

4 e=2%Ay-Ax
[Initialize value of decision variable or error to compensate for
nonzero intercepts])

5. i=1[Initialize counter]

Plot (%, y)

while (e 20)

{

N

y=y+1
e=e—2*Ax
)
x=x+1
e=e+2*Ay
8. i=i+1l
9. if (i <Ax) then go to step 6.
10. Stop
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Ex.2.3:  Consider the line from (5, 5) to (13, 9). Use the Bresenham's algorithm to rasterize the

line.
Sol. : Evaluating steps 1 through 4 in the Bresenham'’s algorithm we have,
Ax = | 13-5]=8
Ay = |9-5]| =4
X =5
y =5
e = 2xAy~-Ax=2%4-8
=0
Tabulating the results of each iteration in the step 5 through 10.
i Plot x y e
5 5 0
1 (5.5 6 6 -8
2 (6, 6) 7 6 0
3 (7.6) 8 7 -8
4 8,7 9 7 0
5 ©.7) 10 8 -8
6 (10, 8) 11 8 0
7 (11, 8) 12 9 -8
8 (12,9 13 9 0
9 (13,9) 14 10 -8
Table 2.3

The results are plotted as shown in Fig. 2.5.

4 5 6 7 8 9 10 11 12 13

Fig. 2.5
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'C' code for Bresenham's Line Drawing Algorithm
(Softcopy of this program is available at vtubooks.com)

#include<stdio.h>

#include<graphics.h>

#include<math.h>

main ()

{

float x,y,x1,yl,x2,y2,dx,dy,e;

int i,gd,gm;

clrscr();
/* Read two end points of line

printf ("Enter the value of x1 \t");
scanf ("$f", &xl);
printf ("Enter the value of yl :\t");
scanf ("$£f", &yl);
printf ("Enter the value of x2 \t");
séanf("%f",&xZ);
printf ("Enter the value of y2 :\t");
scanf ("3$f", &y2);

/* Initialise graphics mode

detectgraph(&gd,&gm);
initgraph (&gd, sgm, "");

dx=abs (x2-x1) ;
dy=abs (y2-yl);

/* Initialise starting point
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i=1;

do
{
putpixel (x,y,15);
while (e >= 0)
{

y + 1;

e - 2 * dx;

e

}

X =x + 1;

e = e + 2 * dy;
i=1i+ 1;

}

while( i <= dx);
getch();
closegraph () ;

}

Fig. 2.6 Conditions for generalized Bresenham's

algorithm

Generalized Bresenham's Algorithm

1.
2.
3.

\

/* Initialise loop counter */

The Bresenham's algorithm only
works for the first octant. The
generalized Bresenham's algorithm
requires modification for lines lying in
the other octants. Such algorithm can be
easily developed by considering the
quadrant in which the line lies and it
slope. When the absolute magnitude of
the slope of the line is greater than 1, y is
incremented by one and Bresenham's
decision variable or error is used to
determine when to increment x. The x
and y incremental values depend on the
quadrant in which the line exists. This
is illustrated in Fig. 2.6.

Read the line end point (x,, y,) and (x, , y,) such that they are not equal.

Ax =|x, ~x|and Ay =|y, -y||

Initialize starting point
X= Xl

y=y
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4.

10.

11.
12,
13.

s, = Sign (x5 — x;)
s, = Sign (y, - y;)

[Sign function returns - 1, 0, 1 depending on whether its argument is
<0, = 0, > 0 respectively]

if Ay > Ax then

Exchange Ax and Ay

Ex_change=1
else

Ex_change=0 | -
end if

[Interchange Ax and Ay depending on the slope of the line and set
Ex_change flag accordingly]

e=2*Ay— Ax

[Initialize value of decision variable or error to compensate for
nonzero intercept ].

i=1 { Initialize counter )
Plot (x, };)
while (e > 0)
{ if ( Ex_change = 1) then
X=X+8;
else
Y=Yy +5,
end if
e=e—2*xAx

}

if Ex_change = 1 then
y=Y+8g

else
X=X+8s;

end if

e=e+2x*Ay

i=i+1

if (i < Ax) then go to step 8

Stop




Computer Graphics 59 Raster Graphics Algorithms for Drawing 2-D Primitives

2.4 Antialiasing of Lines

In the line drawing
algorithms, we have seen that all
rasterized locations do not match
with the true line and we have to
select the optimum raster

(.J[ . ] . locations to represent a straight

~ line. This problem is severe in

. 4
@&j{ low re__splution screens. In such

@@@ : screens line appears like a

' stair-step, as shown in the
@ Fig. 2.7. This effect is known as
aliasing. It is dominant for lines
having slopes less than 20° or
greater than 70°.

The aliasing effect can be reduced by adjusting intensities of the pixels along the line.

The process of adjusting intensities of the pixels along the line to minimize the effect of
aliasing is called antialiasing.

2.5 Methods of Antialiasing

A

Fig. 2.7 Aliasing effect

2.5.1 Increasing Resolution

The aliasing effect can be minimized by increasing resolution of the raster display. By
increasing resolution and making it twice the original one, the line passes through twice as
many column of pixels and therefore has twice as many jags, but each jag is half as large in x
and in y direction.

) v ®s

&y o EJ@

'y

(@) (b)

Fig. 2.8 Effect on aliasing with increase in resolution

As shown in the Fig. 2.8, line looks better in twice resolution, but this improvement
comes at the price of quadrupling the cost of memory, bandwidth of memory and
scan-conversion time. Thus increasing resolution is an expensive method for reducing
aliasing effect.
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2.5.2 Unweighted Area Sampling

We have seen that for sloped lines, many a times the line passes between two pixels. In
these cases, line drawing algorithm selects the pixel which is closer to the true line. This step
in line drawing algorithms can be modified to perform antialiasing. In antialiasing, instead
of picking closest pixel, both pixels are highlighted. However, their intensity values may
differ.

In unweighted area sampling, the intensity of pixel is proportional to the amount of line
arca occupied by the pixel. This technique produces noticeably better results than does
setting pixels either to full intensity or to zero intensity.

<) )

Fig. 2.9 Unweighted area sampling

2.5.3 Weighted Area Sampling

We have seen that in unweighted area sampling equal areas contribute equal intensity,
regardless of the distance between the pixel's center and the area; only the total amount of
occupied area matters. Thus, a small area in the corner of the pixel contributes just as much
as does an equal-sized area near the pixel's center. To avoid this problem even better
strategy is used in the weighted area sampling.

In weighted area sampling equal areas contribute unequally i.e. a small area closer to the
pixel center has greater intensity than does one at a greater distance. Thus, in weighted area
sampling the intensity of the pixel is dependent on the line area occupied and the distance of
area from the pixel's center. This is illustrated in Fig. 2.10.

Fig. 2.10 Weighted area sampling
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2.6 Thick Line Segments

So far we have discussed line drawing algorithms where thickness of line is one pixel. In
raster displays, it is possible to draw lines with thickness greater than one pixel. To produce
a thick line, we have to run two line drawing algorithms in parallel to find the pixels along
the line edges, and while stepping along the line we have to turn on all the pixels which lie
between the boundaries. This is illustrated in Fig. 2.11.

@ Line edges

@ Pixels between
the boundaries

Fig. 2.11 Thick line

Let us consider line from point (x,, y;) to (x,, y,) having thickness w, then we have a top
boundary between the points (x,, y, + wy) and (x,, y, + w,) and a lower boundary between
(1, y1—w,) and (x,, y, - w,) where w, is given by

(w1 [(Xz -x)2 +(y, _YI)Z]

Y 2 |x, —x]

172

Here, Wy, is the amount by which the boundary lines are moved from the line center, as
shown in the Fig. 2.12. The factor(w — 1) in the above equation exist because the line
boundary itself has a thickness of one pixel. We further divide the factor (w - 1) by 2 because
half the thickness will be used to offset the top boundary, and the other half to move the
bottom boundary.
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We can use equation for w, for lines
having slope less than 1. For sharp slope lines,
i.e. lines having slope greater than 1 lines are
handled similarly with the x and y roles
reversed. In this case w, is given as

1
(w -1 [6o=-x)? (v, -y,)?]"
W, =
2 |y2 =yl

Thus, left and right boundaries are
(Xl Wy YI) to (Xz —Wy, Yz) and (xl +W,, YI) to
Fig. 2.12 Thick line details (X2 + Wy, v,), respectively.

'C' code for Thick Line Drawing Algorithm

(Softcopy of this program is available at vtubooks.com)

#include<stdio.h>
#include<conio.h>
#include<graphics.h>
#include<math.h>

void main ()

{

int gd = DETECT, gm ;

float wy, wx, x1, yl, x2, y2;
int i, thickness;

initgraph(&gd, &gm, " ");

/* Read two end points of the line
____________________________________ */
printf ("Enter the co-ordinates for the line:\n");
printf ("X1: ");

scanf ("$£f", &x1):

printf("Yl: ");

scanf ("%f", &yl);

printf ("X2: ");

scanf ("$f", &x2);

printf ("Y2: ");

scanf ("%£f", &y2);
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/* Enter the thickness of the line

printf ("Enter the required thickness: ");
scanf ("%d", &thickness);
cleardevice () ;
line (x1, yl1, x2, y2);
if ((y2 - y1) / (x2 - x1l) < 1)
{
wy =(thickness—1)*sqrt(pow((x2—x1),2)+pow((y2—y1),2))/(2*fabs(x2-xl));
for(i = 0; i < wy; i++)
(
line(x1, yl - i, x2, y2 - i);
line(x1, yl1 + i, x2, ¥2 + i);
}
}
else
{
wx = (thickness—l)*sqrt(pow((x2—x1),2)+pow((y2—y1),2))/(2*fabs(y2—y1));
for(i = 0; i < wx; i++)
{
line(xl - i, y1, x2 - i, y2);
line(x1 + i, yl, x2 + i, y2);
}
}
printf("This is the line of thickness %d units.\n", thickness);
getch{();
}

2.7 Basic Concepts in Circle Drawing

A circle is a symmetrical figure. It
y axis has eight-way symmetry as shown in
(—X’X) f A the Fig. 2.13. Thus, any circle generating

y =xline algorithm can take advantage of the

(~y.x) o circle symmetry to plot eight points by
- X axis calculating the coordinates of any one
yx) - .« (X) point. For example, if point A in the
o ' Fig.2.13 is calculated with a circle
. . y = —x line algorithm, seven more points could be

(=x.=y) | (x-y) found just by reflection.

Fig. 2.13 Eight-way symmetry of a circle
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2.8 Representation of a Circle

There are two standard methods of mathematically representing a circle centered at the
origin.

2.8.1 Polynomial Method

In this method circle is represented by a polynomial equation.
ry? = g2

where x : the x coordinate

y : they coordinate

r : radius of the circle

Here, polynomial equation can be

y4 used to find y coordinate for the known

x coordinate. Therefore, the scan

| S N =(x‘ N xz) converting circle using polynomial

y a method is achieved by stepping x from
'

ey Otor ﬁ, and each y coordinate is found

by evaluating v r? - x? for each step of
x. This generates the 1/8 portion (90°to
45°) of the circle. Remaining part of the
circle can be generated just by
reflection.

Fig. 2.14 Scan converting circle using polynomial The polynomial method of circle

method generation is an inefficient method. In
this method for each point both x and r must be squared and x* must be subtracted from r’
then the square root of the result must be found out.

2.8.2 Trigonometric Method

In this method, the circle is represented by use of trigonometric functions

x=1cos® and y=rsin®
y where 0: current angle
P = (r cos®, r sind) r : radius of the circle

x : the x coordinate

1
r ] : , .
A W y : they coordinate
| . . -
P X The scan converting circle using
r COs

trigonometric method is achieved by stepping 6
from 0 to n/4 radians, and each value of x and y
is calculated. However, this method is more
inefficient than the polynomial method because
the computation of the values of sin8 and cos 8 is
Fig. 2.15 Scan converting circle using even more time-consuming than the
calculations required in the polynomial method.

trigonometric method
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2.9 Circle Drawing Algorithms

In this section we are going to discuss two efficient circle drawing algorithms :

* DDA algorithm and
* Bresenham’s algorithm
* Midpoint algorithm

2.9.1 DDA Circle Drawing Algorithm

We know that, the equation of circle, with origin as the center of the circle is given as
2,2 _ 2
X+y" =r
The digital differential analyser algorithm can be used to draw the circle by defining
circle as a differential equation. It is as given below

2xdx+2ydy = 0 where r isconstant

xdx+ydy = 0
ydy = -xdx

dy = —x

d Ty

From above equation, we can construct the circle by using incremental x value, Ax = gy
and incremental y value, Ay = —gx, where¢ is calculated from the radius of the circle as given
below

2" < p<c2m p radius of the circle

g =2"
For example, if r = 50 then n = 6 so that 32 < 50 < 64
. e = 26
= 0.0156
Applying these incremental steps we have,
Xne1 = Xy +E Yn
Yn+1 = Yn—EX,

The points plotted using above equations give the spiral instead of the circle. To get the
circle we have to make one correction in the equation; we have to replace x, by x, , ; in the
equation of y, _ ;.

Therefore, now wehave  x,,, = x_+¢ Va

Yns1 = Yn_axn+}

Algorithm
1. Read the radius (r), of the circle and calculate value of &
2. start_ x=0
start_y=r

3. x;=start_x
y, = start_y
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4. do

( Xp=x;+ey;
Ye=Y1—€Xy

[ %, represents x,,; and x, represents X, ]
Plot (int (x5 ), int (y,))
X=Xy,
Y1=Y2s

[Reinitialize the current point }

} while (y; ~start_y ) <¢ or (start x—x,)>¢

[check if the current point is the starting point or not. If current
point is not starting point repeat step 4 ; otherwise stop]

5. Stop.

'C' code for DDA Circle Drawing Algorithm

(Softcopy of this program is available at vtubooks.com)

#include<stdio.h>

#include<graphics.h>

#include<math.h>

main ()

{

float x1,yl,x2,y2,startx, starty,epsilon;
int gd,gm,i,val;

int rx;

clrscr();

/* Read two end points of line

__________________________________ */
printf ("Enter the radius of a circle :");
scanf ("%d", &r) ;

/* Initialise graphics mode
__________________________________ */
detectgraph (&gd, &gm) ;
initgraph (&gd, &gm,"") ;

/* Initialise starting point
________________________________ */

x1=r*cos (0);
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yl=r*sin(0);
startx = x1;

starty = yi1;

/*Calculations for epsilon

val = pow(2,1i);
i++;
}while(val<r);

epsilon = l/pow(2,i-1);

do
{
x2= x1 + yl*epsilon;
y2 = yl - epsilon*x2;
putpixel(200+x2,200+y2,15);

/* Reinitialise the current point

__________________________________ */
X1=x2;
yl=y2;
delay(1000); /* Delay is purposely inserted to see
observe the line drawing process */
}
while( (yl1 - starty ) < epsilon || (startx - x1) > epsilon);
getch();
closegraph() ;

}

2.9.2 Bresenham's Circle Drawing Algorithm

The Bresenham's circle drawing algorithm considers the eight-way symmetry of the
circle to generate it. It plots 1/8™ part of the circle, i.e. from 90° to 45° as shown in the

Fig. 2.16. As circle is drawn from 90° to 45°, the x moves in positive direction and y moves in
the negative direction.
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y To achieve best approximation to the true circle
we have to select those pixels in the raster that fall

_j the least distance from the true circle. Refer Fig. 2.17.
Let us observe the 90° to 45° portion of the circle. It

90:) 45_0. =x can be noticed that if points are generated from 90°to

45°, each new point closest to the true circle can be
found by applying either of the two options :

* Increment in positive x direction by one unit or
* Increment in positive x direction and negative y
direction both by one unit

Fig. 2.16 1/8 part of circle
y

90° //

45°
0 - X

Fig. 2.17 Scan conversion with Bresenham's algorithm

Let us assume point P in Fig. 2.17 as a last scan converted pixel. Now we have two

options either to choose pixel A or pixel B. The closer pixel amongst these two can be
determined as follows

The distances of pixels A and B from the origin are given as

Dy = (xi4)° +(y;)° and
Dy = \/ (X4 )2 +(y; ‘1)2
Now, the distances of pixels A and B from the true circle are given as
3y = Dy-rand 83 =Dg-r
However, to avoid square root term in derivation of decision variable, i.e. to simplify the
computation and to make algorithm more efficient the §, and 8 are defined as
84 = D2 =1* and
8 = Dg*—1?
From Fig. 2.17, we can observe that 3, is always positive and 85 always negative.
Therefore, we can define decision variable d; as
d; = 3, +8y
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and we can say that, if d; <0, i.e., 8, < 8y then only x is incremented; otherwise x is
incremented in positive direction and y is incremented in negative direction. In other
words we can write,

Ford, < 0, Xi,1 = x;+1and

Ford; 2 0, Xivp = X+land y;,,=y,-1

The equation for d, at starting point, i.e. at x = 0 and y = r can be simplified as follows
di = 8A +83

O+ 1) + y) -r’+ (x; + 1)* + (y;-1)*-r
O+1)°+ (@) -+ (0 + 112+ (r - 12—
1+r-P+1+%-2r+1-1
3-2r

Similarly, the equations for d, , , for both the cases are given as

For d; < 0, di,;=di+4x +6 and

For d; < 0, di,;=di+4(x,~-y)+10
Algorithm to plot 1/8 of the circle

1. Read the radius (r) of the circle.

2. d=3-2r

[Initialize the. decision variable]

3. x=0,y=r
[Initialize starting point]
4. do
{
plot (x, y)
if (d < 0) then
{
d=d+4x+6
}
else
{d=d+4x~-y)+10
y=y-1
}
x=x+1
} while (x < y)
5. Stop

The remaining part of circle can be drawn by reflecting point about y axis, x axis and
about origin as shown in Fig. 2.18.

Therefore, by adding seven more plot commands after the plot command in the step 4 of
the algorithm, the circle can be plotted. The remaining seven plot commands are :
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y axis plot (y, x)
(x,y) 4 (x, y) _ plot (y, - x)
i . y = x line
plot (x, - y)
(y, —x)e e (v x)
—s X axis plOt (_ X Y)
(=Y, —x)o o (-v.%) plot (-y, ~x)
. . y = xline plot (-y, x) and
(= -y)| x. -y) plot (- x, y)

Fig. 2.18 Eight-way symmetry of the circle
'C' code for Bresenham's Circle Drawing Algorithm

(Softcopy of this program is available at vtubooks.com)

#include<stdio.h>

#include<graphics.h>

#include<math.h>

main ()

{

float d;

int gd,gm, x,y;

int r; J

clrscr();

/* Read the radius of the circle
________ */
printf ("Enter the radius of a circle ")
scanf ("%d", &r) ;

/* Initialise graphics mode

detectgraph (&gd, &gm) ;
initgraph(s&gd, &gm,"") ;

/* Initialise starting points

]
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/* initialise the decision variable

{ putpixel (200+x,200+y,15);
putpixel (200+y, 200+x,15) ;
putpixel (200+y, 200-x,15);
putpixel (200+x,200~-y,15);
putpixel (200-x,200~-y,15);
putpixel (200~y, 200-x,15);
putpixel (200-y,200+x,15);
putpixel (200-x,200+y,15);
if (d <= 0)

{
d=d + 4*x + 6;
}

d + 4*(x-y) + 10;
y - 1;

Ea I SH P
1]

X + 1;

delay(1000); /* Delay is purposely inserted to see
observe the line drawing process */

}
while(x < y):

getch ()

closegraph();

}

2.9.3 Midpoint Circle Drawing Algorithm

The midpoint circle drawing algorithm also uses the eight-way symmetry of the circle to
generate it. It plots 1/8 part of the circle, i.e. from 90°to 45°, as shown in the Fig. 2.19. As circle
is drawn from 90 to 45°, the x moves in the positive direction and y moves in the negative
direction. To draw a 1/8 part of a circle we take unit steps in the positive x direction and
make use of decision parameter to determine which of the two possible y positions is closer
to the circle path at each step. The Fig. 2.19 shows the two possible y positions (y; and y; + 1)
at sampling position x; + 1. Therefore, we have to determine whether the pixel at position
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(x; +1,y,) or at position (x; + 1, Yi — 1) is closer to the circle. For this purpose decision
parameter is used. It uses the circle function (firae (%, y) = X* + ¥* = ) evaluated at the
midpoint between these two pixels.

Yi
N
yit1 N
[——— Midpoint
\
y;t2 \«—x2+ y2— r2=0
X ix+1x+2

Fig. 2.19 Decision parameter to select correct pixel in circle generation algorithm

di = fia.x+ 1,y _%)

2 1Y?
41 N
(x + )+(Y. 2) r |
:(xi+1)2+Yi2_Yi+i_r2 .. (2.6)

If d; < 0, this midpoint is inside the circle and the pixel on the scan line y; is closer to the
circle boundary. If d; > 0, the midposition is outside or on the circle boundary, and y, - 1 is
closer to the circle boundary. The incremental calculation can be determined to obtain the
successive decision parameters. We can obtain a recursive expression for the next decision
parameter by evaluating the circle function at sampling position x;, ; + 1 = x, + 2.

1
di+1 = fcircle(xi+1+l’Yi+1—§)

o 2]

= (D P2 ) ey R (v )+ -1 27)
Looking at equations 2.6 and 2.7 we can write
di,q = di+2(xi+1)+(Yi2+1_Yiz)_(Yi+l~Yi)+1
where y;, ; is either y,ory,_,, depending on the sign of d..

If d; is negative, Yie1 = Vs
' di,; = di+20+1)+1
= di+ 2%, +1 .. (2.8)
If d; is positive, Yis1 = Vi1
- dj,q = di+2(x+1)+1-2y;, ... (29
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The terms 2x;, ; and - 2y, , in equations (2.8) and (2.9) can be incrementally calculated as
2x,1 = 2%, +2
ZYi +1 = 2}’1 -2
The initial value of decision parameter can be obtained by evaluating circle function at
the start position (x,, y;) = (0, ).

‘ 1 2
dO = fcircle[(0+ 1)2 +(r—.£) _rz]
2
1+(r—l) —r?
2

125-r

Algorithm
1. Read the radius (r) of the circle
2. Initialize starting position as

x=0
y=r
3. Calculate initial value of decision parameter as
P=125-r
4. do
{ plot(x,y)
if (d < 0)
| x=x+1
Y=Yy
d=d+2x+1
}
else
{ x=x+1
y=y-1
d=d+2x+2y+1
\ .
while (x < y)

5. Determine symmetry points
6. Stop.
'C' code for Midpoint Circle Drawing Algorithm

(Softcopy of this program is available at vtubooks.com)

#include<stdio.h>

#include<graphics.h>
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#include<math.h>
main ()

{

float p;

int i,gd,gm,x,y;

int r;

/* initialise graphics

________________________ */
detectgraph (&gd, &gm) ;
initgraph (&gd, &gm,"") ;

/* Réad the radius
_______________________ -k/

printf ("Enter the radius of the circle

scanf ("%d", &r) ;

x=0;
y=r;
p =
do

{

1.25 - r;

putpixel (200+x,200+y, 15) ;
putpixel (200+y,200+x,15) ;
putpixel (200+x,200-y,15);
putpixel (200+y,200-x,15); - ¥
putpixel (200-x,200-y,15); *
putpixel (200-x,200+y,15);
putpixel (200-y,200+4x,15);
putpixel (200-y,200-x,15) ;

if (p < 0)

{

x = x+1;

y = Yyi

p=p+ 2*x + 1;
}

else

A
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{
x= x+1;
y= y-1:
p=p + 2*%(x~y) + 1;
}
delay (10000) ;
}
while(x < y);
getch () ;
closegraph () ;
}

2.10 Ellipse Drawing Algorithm

The midpoint ellipse drawing algorithm
uses the four way symmetry of the ellipse to
generate it. The Fig. 2.20 shows the four-way
symmetry of ellipse. This approach is similar
to that used in displaying a raster circle. Here,
the quadrant of the ellipse is divided into two

(=xy) (xy) regions. The Fig. 2.21 shows the division of the
first quadrant according to the slope of an

x ellipse withr, <r,. Asellipse is drawn from 90°

to 0°, the x moves in the positive direction and

(-x,~y) (x,-y) y moves in the negative direction, and ellipse

passes through two regions. It is important to
note that while processing first quadrant we
have to take steps in the x direction where the
slope of the curve has a magnitude less than 1
(for region 1) and to take steps in the y
direction where the slope has a magnitude
Fig. 2.20 Four way symmetry of ellipse greater than 1 (for region 2).

o . . . 2.,2,.2 2 22
Like circle function, the ellipse function feltipse (x, y) (ry X+ y - ) serves as the

decision parameter in the midpoint algorithm. At each sampling position, the next pixel
along the ellipse path is selected according to the sign of the ellipse function evaluated at
midpoint between the two candidate pixels (x; + 1, y;or x; + 1, y;— 1 for region 1 and x;, y, - 1
orx;+1,y;—1 forregion 2).

Starting at (0, r,) we have to take unit steps in the x direction until we reach the boundary
between region 1 and region 2. Then we have to switch to unit steps in the y direction over
the remainder of the curve in the first quadrant. To check for boundary point between
region 1 and region 2 we have to test the value of the slope of the curve at each step. The
slope of the ellipse at each step is givenas
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/I Region

My

Fig. 2.21 Ellipse processing regions

dv 2 rg X
dx 2 er y
At the boundary point between region 1 and region 2, dy/dx =—-1 and
2ry2x = 2rx2y

Therefore, when

2 2
2ryx 2 2ry

r§x2+ l'iy2— rirf, . . .
We have to switch to unit steps in L

the y direction over the remainder of
ypiEn the curve in the first quadrant. The
' : Fig. 2.22 shows the midpoint between
AN the two candidate pixels at sampling
N——— Midpoint position x; + 1 in the first region. The
: next position along the ellipse path can

be evaluated by decision parameter at

this midpoint.

Y~ 1

Fig. 2.22

d;; = fellipsc(xi +1Ly; *%)

2

2 2 2 1 2 2
ry (x; +1) +rx(yi—z) -1 I,

If d); <0, the midpoint is inside the ellipse and the pixel on scan line y, is closer to the
ellipse boundary. If d ;> 0, the n¥idpoint is outside or on the ellipse boundary, and the pixel
on the scan line y; - 1 is closer to the ellipse boundary.
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The incremental calculation of decision parameter of region 1 can be given as

1
dyjy1 = fettipse (Xm +1Lyi _E)

]

1 2
§ )P+ (yin 1) <o g

Substituting value of d;; in above expression we get,
2 2
djir = dli+2ry2 (x;+1) + r; +rg |:(Yi+1 —%) ~(}’i ‘l) }
where y,; , ; is either y; or y; - 1, depending on the sign of d;.
If d;; is negative,ie. d;; <0,y,,, =y,

2

_ 2
diivr = dyy+2r) X, +1y

If d,; is positive or zero,ie.d;;> 0,y;,, =y, -1
' dyj,y = d1i+2r)? xi+l+r)%_2rx2 Yie1
The terms 2 rf x and 21y can be incrementally calculated as
Zr; X = Zr)?xi+2ry2 and
260yi, = 210y - 21

In region 1, the initial value of the decision parameter can be obtained by evaluating the
ellipse function at the start position (x, y,) = (0, r,).

1
dy = fellipse(ll Iy —E)

2, .2 1Y 5
Iy + 1y (ry -—E) -1,
2

= g2, 2 2
=1, +1, ry+4 Iy

For region 2, we sample at unit steps in the negative y direction, and the midpoint is now
taken between horizontal pixels, at each step, as shown in the Fig. 2.22. For this region, the
decision parameter is evaluated as

1
dy = fellipse(xi +E/Yi - 1)

2
2 1 2 2 2 2

I, (xi +§) +1i(y; -1° -1y I,

If d,; > 0, the midpoint is outside the ellipse boundary, and we select the pixel at x.

If d,; < 0, the midpoint is inside or on the ellipse boudnary, and we select pixel position
X; , 1- The incremental decision parameters for region 2 can be given as
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1
dys1 = fenipse(xm +EIYi+] ‘1)

1\
ry2 (Xm +§) +1} ly;-1)-1)% - r? f)?
Substituting value of expression d,, in above expression we get,

2 2, 2 1Y 1V2,]
d2i+1=d2i_2rx(Yi_l)+rx+ry Xi+1+5 T Xi+tz ] 2

where x; , ; set either to x, or to X; + 1, depending on the sign of d,;.

In region 2, the intial value of the decision parameter can be obtained by evaluating the
ellipse function at the last position in the region 1.

1
d20 = fcllip:ie(XO +§/ Yo- 1)

I

2
ryz(x0+%J +12 (Yo-1)2-r? r)?

Algorithm
L. Read radiir, and r,.
2. Initialise starting point as
x=0
y=r,
3. Calculate the initial value of decision parameter in region 1 as

1
d1=rf—rx2r +=r12

y T X
4. Initialize dx and dy as
dx =2 r)?x
dy =2 rxzy
5. do
{ plot(x,y)
if(d, < 0)
{
x=x+1
Y=y
dx=dx +2 rf

d1=d1+dx+rf

2 2 2
[dy = d, + 2ryx + 2r, + ]
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else

{
x=x+1
y=y-1
dx=dx+2r§
dy =dy -21r?
dy=d; +dx—dy+r
2

[dy = d, + 25 x + 21 - 210y - 21)) + 1)

} while (dx < dy)
6. Calculate the initial value of decision parameter in region 2 as

2
d, = r)?(x+%) +r2(y-1) -2 L

7. do
{ Plot(x,y)
if (dy > 0)
| x=x
y=y-1
dy =dy-21?
dy=d,—dy+ 17
d, = @, - 22y - 21}) + 1)
}
else
{
x=x+1
y=y-1
dy=dy -2r2
dx=dx+2r)?
dy =dy+dx —dy + 12
[d; = d, + 2% + 21 - (25y - 2157) + 1]
} while (y > 0) -

7. Determine symmetrical points in other three quadrants.
8. Stop.
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'C' code for Midpoint Ellipse Drawing Algorithm

(Softcopy of this program is available at vtubooks.com)
#include<stdio.h>
#include<graphics.h>
#include<math.h>
main ()
{
long d1,d2;
int i,gd,gm,x,y;

long rx, ry, rxsq,rysq,tworxsq,tworysq,dx;dy;
/* Read the radius x and y

printf("Enter the x radius of the ellipse :");

scanf ("%$1d", &rx) ;

printf("Enter the y radius of the ellipse :");
scanf ("%$1d", sry) ;

/* initialise graphics

detectgraph(&gd,&gm);
initgraph (&gd, &gm, " ") ;

IXsSq = rx * rx;

rysq = ry * ry;
tworxsq = 2 * rxsq;
tworysq = 2 * rysq;
x = 0;

Yy = ry;

dl = rysq - rxsq * ry + (0.25 * rxsq) ;
dx = tworysq * x;

dy = tworxsq * y;

do
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putpixel (200+x,200+y,15);
putpixel (200-x,200-y, 15);
putpixel (200+x,200~-y,15);
putpixel (200-x,200+y,15);

if (dl < 0)
{

X =X + 1;

dx = dx + tworysq;

dl = dl + dx + rysq;

X =x+ 1;

y=vy -1

dx = dx + tworysq;

dy dy - tworxsq;

dl dl + dx - dy + rysg;
}

delay (10);

}

while( dx < dy);

fl

d2 = rysg* (x+0.5) * (x+0.5)+rxsq*(y—1r*(y—l)—rxsq*rysq
do

{

putpixel (200+x,200+y,15);

putpixel (200-x,200-y,15);

putpixel (200+x,200-y, 15) ;

putpixel(200—x,200+y,15){

r

if(d2 > 0)
{

X X7

Yy =y -1;

dy = dy -tworxsq;
d2 = d2 - dy + rxsgqg;
}

else
{ x = x+1;
y =y -1;
dy = dy -tworxsq;
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dx = dx + tworysq;
dz2
}

} while (y > 0);

d2 + dx - dy + rxsq;

getch();
closegraph () ;
}

Solved Examples

Ex. 2.4

Sol.:

The turnover of ABC Company for the following divisions is indicated below :

Construction Rs. 125 Crores
Engineering Rs. 90 Crores
Shipping Rs. 530 Crores
Consumer products Rs 140 crores

Agro-tech Rs 115 Crores

Write a program to represent this information in a pie-chart.

The 'C’ code for above program is as given below
#include<stdio.h>

#include<graphics.h>

#include<math.h>

main ()

{

float sum=0,comp[5],dO,angle,theta,x,y,xc,yc;
int i,qgd, gm;

/* initialise graphics

detectgraph(&gd,&gm);
initgraph (&gd, &gm, "") ;

/* Read the turnover values */
for(i=0;1i<5;i++)

{

printf ("Enter the turnover value for company%d :",i+1);

scanf ("%f", &comp[il);
}

for (i=0;1<5;i++)

{

(May-97)
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sum = sum + comp(i];
}

for (i=0;1<5;i++)

{

comp([i] = (comp[i]/sum)*360;

}

Xxc = 320;

yc = 240;

X = 420;

y = 240;

g0 = 1/(3.2 * (abs(x-xc) + abs(y-yc)));
angle = 0;

theta = 0;

for (i=0;i<5;i++)
{
theta = theta + comp{il;
while (angle*180/3.142 < theta )
{
setcolor (i+1);
line(xc, yc,x,y);
X = x - (y-yc) * d4do0;
Yy =y + (x - xc)*d0;
angle = angle + dO;
delay(100);
}
}
getch{();
closegraph() ;
}
Ex.2.5  Consider the following circuit where the switch , is closed at t = 0. Develop a program to
display the plot of Vo(t) for t>0.
(May-2000)
Sol.: The 'C’ code for above program is as given below
#include<stdio.h>
#include<graphics.h>

#include<math.h>
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Fig. 2.23
main ()
.
float d,t,c,r,vo,v,T;
int i,qgd,gm,x,y;
detectgraph (&gd, &gm) ;
initgraph(sgd, &gm,"") ;
printf ("Enter the value of battery voltage :");
scanf ("%f", &v) ;
printf ("Enter the value of capacitor :");
scanf ("%f", &c) ;
printf ("Enter the value of resistor :");
scanf ("%f", &r) ;
t= 0.0;
/* Draw axis */
line (50,400, 600,400);
line (100,440,100, 50);

for(i=0;i<450;i++)

T = -t/ (c*r);

vo = v - (v*(l-exp(T)));

t =t + 0.001;

putpixel (100+t*1000, 400-vo*(300/v),15);
delay (1000) ;

}

getch();

closegraph():

}

Review Questions

1. Explain the basic concept in line drawing.

2. Explain the steps in the incremental line drawing algorithm.
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3. Explain the steps in DDA line drawing algorithm.
4. Discuss merits and demerits of DDA line drawing algorithm.
5. Explain the steps in Bresenham'’s line drawing algorithm.
6. Explain the steps in generalized Bresenham's line drawing algorithm.
7. What is aliasing ? Explain different methods of minimizing its effect.
8. Write a short note on thick line segment.
" 9. Explain the basic concept in circle drawing.
10. Give different methods of representing a circle.
11. Explain the steps in DDA circle drawing algorithm.
12. Explain the steps in Bresenham's circle drawing algorithm.
13. Explain the steps in midpoint circle drawing algorithm.

14. Explain the steps in midpoint ellipse drawing algorithm.

University Questions

1. Develop a procedure/function for the Bresenham's line algorithm.

Your algorithm should take care of lines of any given slope. (Dec-96)

2. Using the above, write a program to plot a line graph over a set of values stored in an array

"Vals”. Properly scale the values before plotting. (Dec-96)
3. The turnover of ABC Company for the following divisions is indicated below :

Construction Rs. 125 Crores

Engineering Rs. 90 Crores

Shipping Rs. 530 Crores

Consumer products  Rs 140 crores

Agro-tech Rs 115 Crores

Write a program to represent this information in a pie-chart. {(May-97, Dec-2001)
4. Develop the Bresenham's line algorithm to draw lines of any slope. Compare this with the

DDA algorithm. (Dec-97)
5. Develop a program to display a pie-chart over a set of values. You are allowed to use only the

set-pixel () or put-pixel () primitive. (Dec-97)

[Hint : Replace a line function in program given for question 8
with a line function using putpixel, i.e. use DDA or
Bresenham's algorithm to develop line function ]

6. Write an algorithm for Bresenham Circle Generation and then using it produce sequence of
atleast five points along the circumference of circle with radius = 20 and centered at (50; 50)

{May-98)

7. Write an algorithm for Bresenham Line Generation which will work for all slopes. Calculate
the pixel positions along a straight line between P, (20, 20) and P, (10, 12). (May-98)
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8.

Develop an ellipse generation algorithm and use it to display elliptical arcs as shown below.

10.
11.
12.

—
W

15.

16.

17.

18.

Fig. 2.24
{Dec-98)
INote : Only solid are is displayed : centre is at (xc, yc)]

- What is antialiasing ? How can it be reduced? (May-99)
How is Bresenham's technique advantageous ? (May-99)
Explain the principle of any of the antialiasing techniques. (Dec-99)
Derive the algorithm for drawing Bresenham line between the end points : (100, 100) and
(150, 200) (Dec-99)

. Repeat the above question for the end points (100, 100) and (200, 150). (Dec-99)

- Compute the first three Bresenham points in each of the cases mentioned in above two
questions. (Dec-99)
Develop a program to plot a bar graph over a set of 'n’ values stored in an array 'data’.
Ensure that the values are scaled propetly to fit onto the display extents. (Dec-2000)
Derive Bresenham's line drawing algorithm which will work for line of any slope.
Compute the first five points for the line segment A(20, 20) B(12, 10). (May-2001)
Derive and give the modified Bresenham's line drawing algorithm which will work for line
of any slope. (Dec-2001)

A dash line is shown below. Develop an algorithm to draw a dash line from point A(x;, v;)
to point B(x,, y,). The length of dash is d pixels and length of gap between dash is g pixels.

— B(x5.y5)
—

Fig. 2.25

(Dec-2001, May-2002)
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19.

20.
21.
22.

23

Two points on the circumference of the circle represented by (x - 5())2‘+ {v- 50)2 =100 are
given by (50, 60) and (60, 50).

Compute the pixel locations to be highlighted between the above points using Bresenham's

aircle algorithm. (Dec-2001)
Write a short note on antialiasing techniques. (Dec-2001)
Explain the different antialiasing methods. (May-2002)

What are the advantages of Bresenham's line drawing algorithm ?

Bresenham's line drawing algorithm is considered as most efficient algorithm when
compared with DDA line drawing algorithm. State the reason. (May-2003)

Mustrate antialiasing. {(May-2003)

adaQ
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3.1 Introduction

b We have seen scan conversion of lines, circles and elipse in the last chapter. In this

it chapter we are going to study different types of polygons, their representation and filling
: algorithms for them.

A polyline is a chain of connected line segments. It is specified by giving the vertices
(nodes) P, Py, P, ... and so on. The first vertex is called the initial or starting point and the last
vertex is called the final or terminal point, as shown in the Fig. 3.1 (a). When starting point

and terminal point of any polyline is same, i.e. when polyline is closed then it is called
polygon. This is illustrated in Fig. 3.1 (b).

Po
Star.ting P, Py
p;mt p1 P2
]
P2 P
4 Py
Terminal
point
Ps
(a) Polyline (b) Polygon

Fig. 3.1
¥ 3.2 Types of Polygons

\/ The classification of polygons is based on where the line segment joining any two points
within the polygon is going to lie. There are two types of polygons :

* Convex and

> Concave
. \/Aconvex polygon is a polygon in which the line segment joining any two points within
: the polygon lies completely inside the polygon. The Fig. 3.2 shows the examples of convex
b polygons.
1

s | (88)
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Fig. 3.2 Convex polygons

. concave polygon is a polygon in which the line segment joining any two points within
the polygon may not lie completely inside the polygon. The Fig. 3.3 shows the examples of
concave polygons.

A

Q\rn

Fig. 3.3 Concave polygons
3.3 Representation of Polygons

We have seen that closed polyline is a polygon. Each polygon has sides and edges. The
end points of the sides are called the polygon vertices. To add polygon to our graphis
system, we must first decide how to represent it. There are three approaches to represent
polygons according to the graphics systems :

* Polygon drawing primitive approach
* Trapezoid primitive approach
* Line and point approach

Some graphics devices supports polygon drawing primitive approach. They can
directly draw the polygon shapes. On such devices polygons are saved as a unit. Some
graphics devices support trapezoid primitive. In such devices, trapezoids are formed from
two scan lines and two line segments as shown in the Fig. 3.4. Here, trapezoids are drawn by
stepping down the line segments with two vector generators and, for each scan line, filing
inall the pixels between them. Therefore every polygon is broken up into trapezoids and it is
represented as a series of trapezoids.

(a) Polygon (b) Polygon as a series of trapezoids

Fig. 3.4 Representation of polygon
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Most of the other graphics devices do not provide any polygon support at all. In such
cases polygons are represented using lines and points. A polygon is represented as a unit
and it is stored in the display file. In a display file polygon can not be stored only with series
of line commands because they do not specify how many of the following line commands
are the part of the polygon. Therefore, new command is used in the display file to represent
polygons. The opcode for new command itself specify the number of line segments in the
polygon. The Fig. 3.5 shows the polygon and its representation using display file.

DF_OP DF_ x DF_y
2
@) 6 0
2 0 4
0.4) (6.4)
2 4 6
(0.2) (6.2) 2 6 4
2 6 2
(4,0)
2 4 0
2 0 2

Fig. 3.5 Polygon and its representation using display file

3.4 Entering Polygons

Let us see how to enter polygon command and data into the display file. We know that,
we have to enter number of sides and the coordinates of the vertex points. This information
can be entered using a following algorithm.

Algorithm :  Entering the polygon into the display file
1. Read AX and AY of length N '

[AX and AY are arrays containing the vertices of the polygon and N is
the number of polygon sides]

2.1=0 [Initialize counter to count number of sides]
DF_OP [i] « N
DF_x [i] « AX [i]
DF_y [i] « AY [i]
ie—i+1
[Load polygon command]
3.do
A
DF_OP li] «2
DF x [i] « AX |i]
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DF_y [i] « AY [i]
1e1+1
}
While i <N) [Enter line commands]
4.DF_ OP[i) « 2
DF_ x [i] « AX [0]
DF_y [i] « AY [0]
(Enter last line command]
5. Stop

3.5 An Inside Test

Once the polygon is entered in the display file, we can draw the outline of the polygon.
To show polygon as a solid object we have to set the pixels inside the polygon as well as
pixels on the boundary of it. Now the question is how to determine whether or not a pointis
inside of a polygon. One simple method of doing this is to construct a line segment between
the point in question and a point known to be outside the polygon, as shown in the Fig. 3.6.
Now coynt how many intersections of the line segment with the polygon boundary o-cur. If
there afe an odd number of intersections, then the point in question is inside; otherwise it is
outg{de. This method is called the even-odd method of determining polygon inside points.

Even

Odd
Odd

Even

Fig. 3.6

If the intersection point is vertex of the polygon then we have to look at the other
endpoints of the two segments which meet at this vertex. If these points lie on the same side
of the constructed line, then the point in question counts as an even number of intersections.
If they lie on opposite sides of the constructed line, then the point is counted as a single
intersection. This is illustrated in Fig. 3.7.

Another approach to do the inside test is the winding-number method. Let us consider
a point in question and a point on the polygon boundary. Conceptually, we can stretch a
piece of elastic between these points and slide the end point on the polygon boundary for
one complete rotation. We can then examine the point in question to see how many times the



Computer Graphics 92 Area Filling ’

elastic has wound around it. If it is wound at least once, then the point is inside. If there is no
net winding, then the point is outside.

Counts odd

Counts even

Fig. 3.7

Like even-odd method, in winding number method we have to picturise a line segment
running from outside the polygon to the point in question and consider the polygon sides
which it crosses. Here, instead of just counting the intersections, we have to give a direction
number to each boundary line crossed, and we have to sum these direction numbers. The
direction number indicates the direction the polygon edge was drawn relative to the line
segment we have constructed for the test. This is illustrated in Fig. 3.8

Fig. 3.8

As shown in the Fig. 3.8, point (x,, y,) is a test point and line y = Y. is a horizontal line
runs from outside the polygon to point (x,, y,). The polygon edges crossed by this line could
be drawn in two ways. The edge could be drawn starting below the line, cross it, and end
above the line or starting above the line, cross it, and end below the line. In first case we have
to give direction number as -1 and in the second case we have give direction number as 1.
After giving the direction numbers we have to take sum of these direction numbers which
indicates whether the point in inside the polygon or not. The sum of the direction numbers
for the sides that cross the constructed horizontal line segment is called the winding
number for the point in question. For polygons or two dimensional objects, the point is said
to be inside when the value of winding number is nonzero.
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3.6 Polygon Filling

Filling the polygon means highlighting all the pixels which lie inside the polygon with
any colour other than background colour. Polygons are easier to fill since they have linear
boundaries.

There are two basic aPBroaches used to fill the polygon. One way to fill a polygon is to

_start froma ngen' 'seed", point known to be inside the : polygon and highlight outward from
thisg point i.e. neighbouring pixels until we encounter the boundary pixels. This approach is

called seed fill because colour flows from the seed pixel _until reaching the polygon
boundary, like water flooding on the surface of the container. Another approach to fill the
polygon is to apply the inside test i.e. to check whether the p1xel is inside the polygon or

outside the polygon and then hlghllght pixels which lie inside the polygon. This approach is

known as scan-line qlgonthm It avoids the need for a seed plxel but it requires some

‘computation. Let us see these two methods in detail.

3.6.1 Seed Fill

The seed fill algorithm is further classified as flood fill algorithm and boundary fill
algorithm. Algorithms that fill interior-defined regions are called flood-fill algorithms;
those that fill boundary-defined regions are called boundary-fill algorithms or edge-fill
algorithms.

3.61.1 Boundary Fill Algorithm

In this method, edges of the polygons are drawn. Then starting with some seed, any
point inside the polygon we examine the neighbouring pixels to check whether the
boundary pixel is reached. If boundary pixels are not reached, pixels are highlighted and the
process is continued until boundary pixels are reached.

Boundary defined regions may be either 4-connected or 8-connected as shown in the
Fig.3.9. If a region is 4-connected, then every pixel in the region may be reached by a
combination of moves in only four directions : left, right, up and down. For an 8-connected
region every pixel in the region may be reached by a combination of moves in the two
horizontal, two vertical, and four diagonal directions.

(a) Four connected region (b) Eight connected region

Fig. 3.9
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In some cases, an 8-connected algorithm is more accurate than the 4-connected
algorithm. This is illustrated in Fig. 3.10. Here, a 4-connected algorithm produces the partial
fill.

()

(

L)
0000

X X
L XX X )

(X

7
4 ﬁ:ﬁ

(X

/Seed

00000
\
()
00000000

[ X )
X )
[ X )
L X )
()

0000
(.

(XX X X )
00000

Fig. 3.10 Partial filling resulted using 4-connected algorithm

The following procedure illustrates the recursive method for filling a 4-connected region
with colour specified in parameter fill colour (f-colour) up to a boundary colour specified
with parameter boundary colour (b-colour)

Procedure : boundary_fill (x, y, f_colour, b_colour)
{
if (getpixel (x,y) ! = h_colour && getpixel (x, y) ! = f_colour)
{ putpixel (x, y, f_colour)
boundary_fill (x + 1, y, f_colour, b_colour);
boundary_fill (x, y + 1, f_colour, b_colour);
boundary_fill (x — 1, y, f_colour, b_colour);
boundary_fill (x, y - 1, f_colour, b_colour);

}

Note : ‘getpixel' function gives the colour of specified pixel and ‘putpixel’
function draws the pixel with specified colour.

Same procedure can be modified according to 8 connected region algorithm by
including four additional statements to test diagonal positions, such as (x + 1, y +1).
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'C’ code for Boundaryfill Algorithm ( 8 connected region)

(Softcopy of this program is available at vtubooks.com)
#include<stdio.h>
#include<graphics.h>
main ()
{int gd,gm;

/* Initialise graphics mode

detectgraph (&gd, &gm) ;
initgraph (&gd, &gm, "") ;

rectangle (50, 50,100,100);

flood(55,55,4,15);

getch{(): ‘
closegraph(): |

}

flood(seed_x,seed_y,foreground_col,background;col)

{

if (getpixel (seed_x,seed_y) != background col &&
getpixel (seed_x, seed_y) != foreground col)
{
putpixel (seed_x, seed_y, foreground col);
flood (seed_x+1, seed_y, foreground_col,background col);
flood(seed_x-1, seed_y, foreground_col,background col);
flood(seed_x, seed_y+1, foreground_col,background_col);
flood{seed_x, seed_y-1, foreground_col,background col);
flood(seed_x+1, seed_y+l, foreground_col,background_col) ;
flood(seed_x-1,seed_y-1, foreground_col,background col);
flood(seed_x+1,seed_y-1, foreground_col,background col);

flood (seed_x-1, seed_y+1, foreground_col,background col);

3.6.1.2'Flood Fill Algorithm

ometimes it is required to fill in an area that is not defined within a single colour
oundary. In such cases we can fill areas by replacing a specified interior colour instead of
searching for a boundary colour. This approach is called a flood-fill algorithm. Like
boundary fill algorithm, here we start with some seed and examine the neighbouring pixels.
However, here pixels are checked for a specified interior colour instead of boundary colour



e T

Computer Graphics 96 Area Filling

and they are replaced by new colour. Using either a 4-connected or 8-connected approach,
we can step through pixel positions until all interior point have been filled. The following
procedure illustrates the recursive method for filling 8-connected region using flood-fif]
algorithm.

Procedure : flood_fill (x, y, old_colour, new_colour).

{
if (getpixel (x, y) = old_colour)
{ putpixel (x, y, new_colour);
flood_fill (x + 1, y, old_colour, new_colour);
flood_fill (x - 1, y, old_colour, new_colour);
flood_fill (x -y +1, old_colour, new_colour);
flood_fill (x, y - 1, old_colour, new_colour);
flood_fill (x + 1, y + 1, old_colour, new_colour);
flood_fill (x - 1, y — 1, old_colour, new_colour);
flood_fill (x + 1,y -1, old_colour, new_colour);
flood_fill (x ~ 1,y + 1, old_colour, new_colour);

J

Note : 'getpixel' function gives the colour of specified pixel and ‘putpixel’ function
draws the pixel with specified colour. :

3.6.2 Scan Line Algorithm

Recursive algorithm for seed fill methods have got two difficulties : The first difficult / is
that if some jnside. pixels are already displayed in fill colour then recursive branch

terminates, leaving further internal pixels unfilled. To avoid this difficulty, we have to first

change the colour of any internal pixels that are initially set to the fill colour before applying
the seed fill procedures. Another difficulty with recursive seed fill methods is that it cannot
be used for large polygons. This is because recursive seed fill Pprocedures require stacking of
neighbouring points and in case of large polygons stack space may be insufficient for
stacking of neighbouring points. To avoid this problem more efficient method can be used.
Such method fills horizontal pixel spans across scan lines, instead of proceeding to
4-connected or 8-connected neighbouring points. This is achieved by identifying the
rightmost and leftmost pixels of the seed pixel and then drawing a horizontal line between
these two boundary pixels. This procedure is repeated with changing the seed pixel above
and below the line just drawn until complete polygon is filled. With this efficient method we
have to stack only a beginning position for each horizontal pixel span, instead of stacking all
unprocessed neighbouring positions around the current position.
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The Fig. 3.11 illustrates the scan line algorithm for filling of polygon. For each scan line
crossing a polygon, this algorithm locates the intersection points of the scan line with the
polygon edges. These intersection points are then sorted from left to right, and the
corresponding positions between each intersection pair are set to the specified fill colour.

y

\

Scan line

[} RS,
[ .

12 15

Fig. 3.11

In Fig. 3.11, we can see that there are two stretches of interior pixels from x = 6 to x = 9
and x =12 to x = 15. The scan line algorithm first finds the largest and smallest y values of the
polygon. It then starts with the largest y value and works its way down, scanning from left
to right, in the manner of a raster display. :

The important task in the scan line algorithm is to find the intersection points of the scan
line with the polygon boundary. When intersection points are even, they are sorted from left
to right, paired and pixels between paired points are set to the fill colour. But in some cases
intersection point is a vertex. When scan line intersects polygon vertex a special handling is
required to find the exact intersection points. To handle such cases, we must look at the other
endpoints of the two line segments of the polygon which meet at this vertex. If these points
lie on the same (up or down) side of the scan line, then the point in question counts as an
even number of intersections. If they lie on opposite sides of the scan line, then the point is
counted as single intersection. This is illustrated in Fig. 3.12.

Y
Scan line 1
Scan line 2
Scan line 3
- X
0

Fig. 3.12 Intersection points along the scan line that intersect pblygon vertices

As shown in the Fig. 3.12, each scan line intersects the vertex or vertices of the polygon.
For scan line 1, the other end points (B and D) of the two line segments of the polygon lie on
the same side of the scan line, hence there are two intersections resulting two pairs: 1 -2 and
3 -4. Intersections points 2 and 3 are actually same points. For scan line 2 the other endpoints
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(D and F) of the two line segments of the polygon lie on the opposite sides of the scan line,
hence there is a single intersection resulting two pairs : 1 - 2 and 3 - 4. For scan line 3, two
vertices are the intersection points. For vertex F the other end points E and G of the two line
segments of the polygon lie on the same side of the scan line whereas for vertex H, the other
endpoints G and [ of the two line segments of the polygon lie on the opposite side of the scan
line. Therefore, at vertex F there are two intersections and at vertex H there is only one
intersection. This results two pairs: 1-2and 3-4 and points 2 and 3 are actually same points.

We have seen that it is necessary to calculate x intersection points for scan line with
every polygon side. We can simplify these calculations by using coherence properties. A
coherence property of a scene is a property of a scene by which we can relate one part of a
scene with the other parts of a scene. Here, we can use a slope of an edge as a coherence
property. By using this property we can determine the x intersection value on the lower scan
line if the x intersection value for current scan line is known. This is given as

Xizp = Xj——
m

where m is the slope of the edge
As we scan from top to bottom value of y coordinates between the two scan line changes
by 1.
Yis1 = Yi—1
Many times it is not necessary to compute the x intersections for scan line with every

polygon side. We need to consider only the polygon sides with endpoints straddling the
current scan line. See Fig. 3.13.

Consider only
these sides

Fig. 3.13 Consider only the sides which intersect the scan line

It will be easier to identify which polygon sides should be tested for x-intersection, if we
first sort the sides in order of their maximum y value. Once the sides are sorted we can
process the scan lines from the top of the polygon to its bottom producing an active edge list
for each scan line crossing the polygon boundaries. The active edge list for a scan line
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contains all edges crossed by that scan line. The Fig. 3.14 shows sorted edges of the polygon
with active edges. ‘

BC

BA

C DC

A DE

Scan line Ad Top

F GF ;
H Active

edges
GH 9

J & ' | EF | «—— Bottom

Hi

Jl

Sorted list of edges

Fig. 3.14 Sorted edges of the polygon with active edges

In summary, a scan line algorithm for filling a polygon begins by ordering the polygon
sides on the largest y value. It begins with the largest y value and scans down the polygon.
For each y, it determines which sides can be intersected and finds the x values of these
intersection points. It then sorts, pairs and passes these x values to a line drawing routine.
Scan Line Conversion Algorithm for Polygon Filling :

1. Read n, the number of vertices of polygon

2. Read x and y coordinates of all vertices in array x[n] and y[n].

3.Find y;, and y,_ ..

4. Store the initial x value (x,) y values y; and y, for two endpoints and x increment Ax
from scan line to scan line for each edge in the array edges [n] [4].

While doing this check that y, > y,, if not interchange y, and y, and corresponding x;
and x, so that for each edge, y, represents its maximum y coordinate and y, represents
it minimum y coordinate.

5. Sort the rows of array, edges [n] [4] in descending order of y,, descending order of y, and
ascending order of x,.

6.8ety =y, .«
7. Find the active edges and update active edge list :
if(y>y,andy < y,)
{ edge is active }
else
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{ edge is not active }

8. Compute the x intersects for all active edges for current y value [initially x-intersect is
x, and x intersects for successive y values can be given as

XX+ Ax
where Ax = - 1 andm=22"01 i.e. slope of a line segment
m XZ - X]

9. If x intersect is vertex i.e. x-intersect = x; and y =y, then apply vertex test to check
whether to consider one intersect or two intersects. Store all x intersects in the
x-intersect [ ] array.

10. Sort x-intersect [ ] array in the ascending order,

11. Extract pairs of intersects from the sorted x-intersect [ ] array. ‘

12. Pass pairs of x values to line drawing routine to draw corresponding line segments
13.Sety=y-1

14. Repeat steps 7 thr(')ugh LBuntily2y ..

15. Stop

In step 7, we have checked for y < y; and not simply y < y:- Hence step 9 a becomes
redundant. Following program takes care of that.

'C' code for Scan line Algorithm for Filling Polygon

(Softcopy of this program is available at vtubooks.com)

#include<stdio.h>
#include<conio.h>

#include<graphics.h>
/* Defining the structure to store edges

struct edge
{

int x1;

int yl;

int x2;

int y2;

int flag;
}:

void main ()
{
int gd = DETECT, gm, n, i, j, k;

-
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struct edge ed[10], temped;
float dx,dy,m[lO],x_int[lO],inter_x[lO];

int x[10],y(10],ymax =

initgraph (&gd, &gm, " ");

/* Read the number of vertices of the polygon

printf ("Enter the number vertices of the graph: ");

scanf ("%d", &n);

480, yy,temp;

/* Read the vertices of the polygon and also find Ymax and Ymin

printf ("Enter the vertices:

for(i = 0; i < n; i++)
{

printf("x{%d] : ", 1i);
scanf ("%d", &x[i]);
printf("y([%d] : ", i);
scanf ("%d", &yl[i]);
if(y[il > ymax)

ymax = y[il;

if(y[i] < ymin)

ymin = y[i];

ed[i] .x1 = x[i];
ed[i].yl/; yvIlil;

}

/* Store the edge information

for (i=0;i<n-1;i++)

{

ed[i].x2 ed[i+1].x1;
edfi].y2 ed[i+1].yl;
ed{i}.flag=0;

}

edfi].x2 ed[0].x1;
ed[i].y2 ed[0].yl;
ed[i].flag=0;

il

f
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/* Check for yl>y2, if not interchange yl and y2
with corresponding x1 and X2 ——————ee—___ x/

for(i=0;i<n;i++)

{

b if(ed{i].yl < ed[i].y2)

| {

temp = edfi}.x1;

ed[i).x1l=ed[i].x2;

ed[i].x2=temp;
temp = ed([i].yl;
ed[i].yl=ed([i].y2;
ed([i].y2=temp;

}

/* Draw the polygon

for(i=0;i<n;i++)

{

line(ed[i].xl,ed[i].y1,ed[i].x2,ed[i].y2);

}

/* sorting of edges in the order of yl,y2,x1

for(i=0;i<n-1;i++)
{
for (§=0;j<n-1;j++)
{
if(ed[j].yl<ed[j+1].y1)
{
temped = ed[j];
ed[jl=ed[j+1];
ed[j+1] = temped;
}
if (ed[Jj].yl==ed[j+1].y1)
{
if(ed[j].y2<ed[j+1].y2)
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{

temped = ed[]j];
ed[]]=ed{]j+1];

ed[j+1] =
}

temped;

if(ed[j].yZ==ed([j+1].y2)

if(ed{j].xl<ed|j+1}.x1)

{

}
/* calculating 1/slope
coordinate of the edge
for (i=0;i<n;i++)

{

temped = ed{j]:
ed[jl=ed[j+1];
ed{j+l] = temped;

of each edge and storing top x

dx = ed(i].x2 - ed[i].x1;
dy = ed[i].y2 - ed[i].yl;
if (dy==0)

{

m(i]=0;

}

else

{

m(i}] = dx/dy;

}

inter_x[i]= edf{il.x1;

}

yy=symax;
while (yy>ymin)
{
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ﬁ /* Marking active egdes
for(i=0;i<n;i+4)
{
! 1f(yy > ed[i).y2 && yy <= ed[i].yl)
{

ed(i]).flag = 1;
}

else

{

ed{i].flag = 0;

)

/*. Finding the x intersections

3=0;

for(i=0;i<n;it++)

if(ed[i].flag==1)
{
if (yy==ed[i].yl)
{
X_int([j)=ed[i].x1;
j++;
*if(ed[i~1].yl==yy && ed(i-1].yl<yy)
[ :
X_int(jl=ed[i].x1;
J++s
1
if(ed{i+l).yl==yy && ed[i+l].yl<yy)
{
X_int[jl=ed[i].x1;

J++;
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}*
}

else

{

x_int[j] = inter x[i]+(-m[i]);

inter_x[i]=x_int[]);

J++;

}

}

/* Sorting the x intersections

for(i=0;i<j;i++)
{
for (k=0;k<j-1;k++)
{ -
if (x_int[k]>x_int[k+1])
-
temp =x_int[k];
x_int[k] = x_int[k+1};
X _int[k+1] = temp;
}

/* Extracting pairs of x values to draw lines

for (i=0;i<j;i+=2)
{
line(x_int[i],yy,x_int[i+1],yy);
}
yy——:
delay(50);
}
getch () ;
}
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Solved Example

Ex3.1:  Writea C’ progrant to generate figure below. Colour the areas as shown. Assume coloir
codes are as follows : Background - 0, Foreground - 4, Grey - 2.

Fore- T
) Gray | ground S'fe
Back- Gray 1
ground Side
Fig. 3.15
(May-99)
Sol.: The 'C' code for above program is as given below

#include<stdio.h>

iinclude<graphics.h>

finclude<math.n>

main()

{

float sum=0,d0,angle,theta,x,y,xc,yc;

int i,9d,gm;

/* initialise graphics

detectgraph (&gd, &gm) ;
initgraph (&gd, &gm, "") ;
rectangle (320,190, 370,240);
rectangle (270,240,320,290);
setfillstyle(l,4);
floodfill (340,210,15);
setfillstyle(1,0);
floodfill (290,270,15);
xc=320;

yc=240;

x=370;

y=240;
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d0 = 1/(3.2 * (abs(x-xc) + abs(y-yc))):
0;
theta = 90;

angle

for(i=0;1i<2;i++)
{
while (angle*180/3.142 < theta )
{
setcolor(2);
putpixel(x,y,15);
Xx = x - (y-yc) * d0; -
y =y + (x - xc)*d0;
angle = angle + d0; ~
delay (100);
}
(180*3.142/180) ;
theta = 270;
x = 270;
y = 240;
}
setfillstyle(1,2);
floodfill (310,230,15);
floodfill (350,250,15);
getch();

angle

closegraph() ;
}

Review Questions

1. What is polygon ? Explain different types of polygons.

2. Explain various approaches used to represent polygon.

3. What is a display file ?

4. Explain the polygon entering algorithm in the display file.
5. Explain the boundary fill alogrithm in detail.

6. Explain the steps required to fill the polygon using flood fill technique.

7. Explain the steps in the scan line algorithm for filling the polygon.
8. What is the need of y-bucket and active edge list?
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University Questions

1. What do you understand by solid area scan converting. Develop an algorithm to scan convert
a polygon. Explain the working of your algorithm for the following picture :-

The triangle PQR is cut out from the rectangle ABCD. (Dec-96, Dec-2000)
A B
P
RI Q]
D C
Fig. 3.16

[Hint : Draw rectangle and fill it with the background

colour then draw triangle and use scan line algorithm
to fill it with desired colour]
2. Write a program for the algorithm discussed above. (Dec-96)

3. Discuss various methods of 2D area filling and state the relative merits and demerits of each.

(May-97, Dec-97)

4. Develop a program to scan convert a polygon. (May-97)
5. Develop a program to scan convert a polygon. Comment on the behaviour of your program if

there are two intersecting polygons. (Dec-97)
6. Write a detailed note on boundary fill and flood fill algorithm. (May-98)

7. Discuss the scan line area fill method, how it will work for following picture ?

Fig. 3.17
(Dec-98)

8. Writea 'C' program to generate figure below. Colour the areas as shown. Assume colour codes
are as follows : Background - 0, Foreground - 4, Grey - 2. (May-99)
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Fore- T
Gray ground S'fe
Back- Gray T
ground Side
Fig. 3.18
9. Write a short note on scan line filling algorithm. (May-99)
10. What is the meaning of scan conversion of point ? (Dec-99)
11 Explain the scan-line algorithm for area filling of polygonal areas. (Dec-99)

12. Discuss any scan line area filling algorithm. Demonstrate how it would behave for the
following shaded area : (May-2000)

)

72725
%

NN\

N

A
Fig. 3.19
13. Explain pattern filling algorithm with example. (May-2001)
14. Write a short note on scan line fill algorithm. (Dec-2001)
15. Write a short note on Boundary-fill algorithm. (May-2003)

Qdo



2-D Geometric Transformation

4.1 Introduction

Almost all graphics systems allow the programmer to define picture that include a
variety of transformations. For example, the programmer is able to magnify a picture so that
detail appears more clearly, or reduce it so that more of the picture is visible. The
programmer is also able to rotate the picture so that he can see it in different angles.

In this chapter we discuss the 2D transformations.

4.2 Two Dimensional Transformations

In this section, we describe the general procedures for applying transiation, rotation,
and scaling parameters to reposition and resize the two dimensional objects.

4.2.1 Translation

Translation is a process of changing the position of an object in a straight-line path from

one coordinate location to another. We can translate a
y L two dimensional point by adding translation
---------- T YL distances, t and ty, to the original coordinate positi
f- . , teand ty, to the original coordinate position
L PX,y) : (%, y) tq move 'the point to a new position (x, y ), as
i’ ! shown in the Fig. 4.1.
! !
- ! X' = X+t 3D
| 1
ety —s! y'=y+ty ...(4.2)
0 X The translation distance pair (t, ty) is called a
- translation vector or shift vector.
Fig. 4.1

It is possible to express the translation equations
4.1 and 4.2 as a single matrix equation by using column vectors to represent coordinate
positions and the translation vector :

X I_XI-! tx

P = p’:l J T=
y y' ty

This allows us to write the two dimensional translation equations in the matrix form :

P=P+T .. (43)

(110
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Ex.4:1: Translate a polygon with coordinates A (2, 5), B (7, 10) and C (10, 2) by 3 units in x
direction and 4 units in y direction.

Sol.:
y | y
151 151 B'
B
104 101 A,
A7
54 Q 51 c
C

0 5 10 15 X 0 5 10 15 X

Fig. 4.2 Translation of polygon
A= A+T

2] [3]-
= +
4

14

101 31

4.2.2 Rotation

A two dimensional rotation is applied to an object by repositioning it along a circular
path in the xy plane. To generate a rotation, we specify a rotation angle 6 and the position of
the rotation point about which the object is to be rotated.
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Y
Px,y) Let us consider the rotation of the object about
the origin, as shown in the Fig. 4.3.
r
Here, r is the constant distance of the point
0 from the origin, angle ¢ is the original angular
r o P(X . ) position of the point from the horizontal, and 0 is
s the rotation angle. Using standard trigonometric
) > equations, we can express the transformed
u coordinates in terms of angles 8 and ¢ as
Fig. 4.3
x =rcos(¢ +8) =rcosd cosO — rsin¢ sin @ @.4)
y' =rsin(¢ +0) =rcosd sin® + rsind cosd o
The original coordinates of the point in polar coordinates are given as
X =TI COS
i ¢ ...(4.5)
y =rsing

Substituting equations 4.5 into 4.4, we get the transformation equations for rotating a
point (x, y) through an angle 0 about the origin

x =xcos0 - ysin0
, ’ .. (4.6)
y =xsin0 +y cosb
The above equations can be represented in the matrix form as given below
. cosf  sin®
x yl =[x
boyl=1 y][—sine cose}
P = PR .. (4.7)
where R is rotation matrix and it is given as
cos@  sin®
R=| ' .. (48)
-sinf®  cos®

[tis important to note that positive values for the rotation angle define counterclockwise
rotations about the rotation point and negative values rotate objects in the clockwise sense.

For negative values of 8 i.e., for clockwise rotation, the rotation matrix becomes

R = cos(—8) sin(-0)
- [—sm(—e) cos(—e)}

_ IiCOS@ —sin 9} ~ cos(—0)=cos® and

sin@  cos® sin(-0)=-sin0
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Ex.4.2:  Apoint(4,3) is rotated counterclockwise by an angle of 45°. Find the rotation matrix and
the resultant point.

cos®  sin® cos45°  sin 45°
SOl. : R = . =
-sin®  cos0 -sin45”  cos45°

1/¥2 /2

-1/¥2 1/42

1/v2 /42
[4 3]} . -

-1/V2 12
[4/V2-3/V2 4/¥2+3/42 ]
= [1/V2 7/2]

P!

fl

4.2.3 Scaling

A scaling transformation changes the size of an object. This operation can be carried out
for polygons by multiplying the coordinate values (x, y) of each vertex by scaling factors S,
and Sy to produce the transformed coordinates (x’, y ).

X =x-S,
and y'=y-S, ... (4.10)

Scaling factor Sy scales object in the x direction and scaling factor Sy scales object in the y
direction. The equations 4.10 can be written in the matrix form as given below :

204 -
154 154
104 B 10} A
A
0_..C s
0 5 10 15 - of 5 10 15 20
(a) {b)
Fig. 4.4
s, 0
X' y1 =[xyl
0 s,
= [x-S y-Sy] ... (4.11)

I
™
»
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Any positive numeric values are valid for scaling factors S¢ and Sy. Values less than 1
reduce the size of the objects and values greater than 1 produce an enlarged object. For both
Sx and Sy values equal to 1, the size of object does not change. To get uniform scaling it is

necessary to assign same value for S« and Sy. Unequal values for S, and Sy result in a
differential scaling.

Ex.4.3:  Scale the polygon with coordinates A (2, 5), B (7, 10) and C (10, 2) by two units in x
direction and two units in y direction.

Sol.: Here 5¢ = 2 and Sy = 2. Therefore, transformation matrix is given as
2 0
S =
0 2
Xy
A2 5
The object matrix is :
B|7 10
Cl10 2
A'lX) Yy, 2 5
20
B ix, y, =7 10
0 2
Cx; ¥, 10 2
4 10
=114 20
20 4
y y
251 251
b0l 20l B'(14,20)
151 153 A10)
B (7,10
10T A@,5) (7.10) 10+
5t 5T C'(20, 4)
1C(10'1 2) | } | ' } I
ol "5 10 15 20 25 X ol "5 10 15 20 25 «x
(a) Original object (b) Scaled object

Fig. 4.5
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4.3 Homogeneous Coordinates

In design and picture formation process, many times we may require to perform
translation, rotations, and scaling to fit the picture components into their proper positions.
In the previous section we have scen that each of the basic transformations can be expressed
in the general matrix form

P= P-M +M, .. (4.12)
1 0 ty
For translation : P =P +
01 t

Le. M = Identity matrix

M, = Translation vector

. 0
, 0 0
For rotation : P = Pp. C?S sin +
—sin@. cosH 0

i.e. M| = Rotational matrix

Mz=0

s, 07 T[o
For scaling : P =P +

0 s, | |o

i.e. M = Scaling matrix
M;=0

To produce a sequence of transformations with above equations, such as translation
followed by rotation and then scaling, we must calculate the transformed coordinates one
step at a time. First, coordinates are translated, then these translated coordinates are scaled,
and finally, the scaled coordinates are rotated. But this sequential transformation process is
not efficient. A more efficient approach is to combine sequence of transformations into one
transformation so that the final coordinate positions are obtained directly from initial
coordinates. This eliminates the calculation of intermediate coordinate values.

In order to combine sequence of transformations we have to eliminate the matrix -
addition associated with the translation terms in M, (Refer equation 4.12). To achieve this we
have to represent matrix M1 as 3 x 3 matrix instead of 2 x 2 introducing an additional dummy
coordinate W. Here, points are specified by three numbers instead of two. This coordinate
system is called homogeneous coordinate system and it allows us to express all
transformation equations as matrix multiplication.
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The homogeneous coordinate is represented by a triplet (Xw, Yw, W),

where
X = Xw and y= Yw
w w

For two dimensional transformations, we can have the homogeneous parameter W to be
any non zero value. But it is convenient to have W = 1. Therefore, each two dimensional
position can be represented with homogeneous coordinate as (, y, 1).

Summaring it all up, we can say that the homogeneous coordinates allow combined
transformation, eliminating the calculation of intermediate coordinate values and thus save
required time for transformation and memory required to store the intermediate coordinate
values. Let us see the homogeneous coordinates for three basic transformations.

4.3.1 Homogeneous Coordinates for Translation
The homogeneous coordinates for translation are given as

1 0 0O
T=/0 1 0 ... (4.13)
te oty 1
Therefore, we have
1 0 0
X y" 11 = [xy1}j0o 1 0
bty 1
=[x+t y+ty 1] ... (4.14)

4.3.2 Homogeneous Coordinates for Rotation
The homogeneous coordinates for rotation are given as

cosf sinB 0

=
Il

~-sin@® cos® 0 ... (4.15)
0 0 1
Therefore, we have .
cos@® sin6 0
X y"1] = [x y 1]|-sin® cos® 0

0 0 1

[x cos®—ysin® xsin@+ycos® 1] ... (4.16)
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4.3.3 Homogeneous Coordinates for Scaling

The homogeneous coordinate for scaling are given as

S, 0 0
S=10 Sy 0
[ 0 0 1
Therefore, we have
S 0 0

\

X y" 1l =[xyl |0 S, 0

Y

{001

= [x-5 y- 5 1] ... (4.17)
Note : In this text, the object matrix is written first and it is then multipled by the required
transformation matrix. If we wish to write the transformation matrix first and then the object
matrix we have to take the transpose of both the matrices and post-multiply the object

matrix i.e.,
X7 oy [XW
; |

[

y | =101 t, ]y
1 0 0 1 1
Ex.44: Givea 3 x 3 homogencous coordinate transformation matrix for each of the following

translations

a) Shift the image to the right 3-units

b) Shift the image up 2 units

c) Move the image down %2 unit and right 1 unit
d) Move the image down 2/3 unit and left 4 units

Sol.: We know that homogenous coordinates for translation are
T 0 0
T=]0 1 0
t, t, 1
a)Here, ty=3and t, =0
1 0 0
T=]101 0
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b) Here, tx=0and ty =2

¢)Here, ti=1land t, =~ 0.5

11 -05 1
d) Here, tx = -4 and t, = - 0.66 i
1 0 0
T=} 0 1 0
-4 -0.66 1

Ex.4.5:  Find the transformation matrix that transforms the given square ABCD to half its size
with centre still remaining at the same position. The coordinates of the square are :
A(1,1),B(3,1),C(3,3),D(1,3) and centreat (2, 2). Also find the resultant coordinates
of square.

Sol.: This transformation can be carried out in the following steps.
1. Translate the square so that its center coincides with the origin.
2. Scale the square with respect to the origin.
! 3. Translate the square back to the original position.
Thus, the overall transformation matrix is formed by multiplication of three matrices.
1 0 0][05 0 01 0 0O

T1-S-T

1
o
—_
(o]

0 05 0{i0 1 0

|
N

|
N
oy
[en)
(e
P
N
N
—
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05 0 0
=10 05 0
111
‘AT 11 W
[0.5 0 0
B’ 31 1)
= 0 05 0
C' 3 31
. 1T 1 1
ID'| |1 3 1]
(1.5 1.5 1]
25 15 1
25 25 1
1.5 2.5 1]

Ex.4.6:  Find a transformation of triangle A (1,0), B(0,1),C (1, 1) by
a) Rotating 45° about the origin and then translating one unit in x and y

direction.
b) Translating one unit in x and y direction and then  rotating 45° about  the
origin.
Sol.: The rotation matrix is
[ cos45 sin45 0 1/v2 1/N2 0
R = |-sin45 cos45 0| =(-1/¥2 1/¥2 0| and
| 0 0 1 0 0 1
The translation matrix is )
1 0 01
T=1010
11 lJ
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1Y¥2 V2 011 0 0]
‘ |

a) 1<-'1‘=|—1/J§ 1/v2 0] 10 1 01
o 0 1)1 1 1J
(142 1/V2 0]
=|-1/v2 1/¥2 0

1 1o
Al Moo 171142 1N2 0
B'|=1]0 1 1||-1/v2 1/¥2 0

'l 11 1 1 1
- . ]
—+1 —+1 1
N
-1 Ly
V2o 2
1 V241 1
1 0 0] V2 V2 0
b) T-R =|{0 1 0| |-1/¥2 1/¥2 0

0 0 1J

[ 1/v2 1/:/5 0]
=-1/¥2 1/J2 0

0 J2 1
A’ :1 0 11| 1/vV2 1v2 o] [1/¥2 32 1
B' =101 1] |-1/v2 1/42 OL -1/42 3/¥2 1
cl [111]] o JE1JL0 2J§'1J

L

111




Computer Graphics 121 2-D Geometric Transformation

In the above example, the resultant coordinates of a triangle calculated in part (a) and (b)
are not same. This shows that the order in which the transformations are applied is
important in the formation of combined or concatenated or composed transformations.

4.4 Composition of 2D Transformations

We have seen what is meant by combined or concatenated or composed transformations
in the previous section. The basic purpose of composing transformations is to gain efficiency
by applying a single composed transformation to a point, rather than applying a series of
transformations, one after the other. #

4.4.1 Rotation About an Arbitrary Point
To rotate an object about an arbitrary point, (x,, yp) we have to carry out three steps :
1. Translate point (x,, yp) to the origin
2. Rotate it about the origin and

3. Finally, translate the center of rotation back where it belongs (See Fig.4.6)

We have already seen that matrix multiplication is not commutative, i.e. multiplying
matrix A by matrix B will notalways yield the same result as multiplying matrix B by matrix
A. Therefore, in obtaining composite transformation matrix, we must be careful to order the
matrices so that they correspond to the order of the transformations on the object. Let us find
the transformation matrices to carry out individual steps.

Yy . 17\
_ {(x.y)
4]
»
(x.y) P
. e
(Xp‘ YD) ,/,
o (x,y)
0 X 0 &
(a) Rotation about an (b) Step 1 : Translate point
arbitrary point (xp, yp) to the origin
y Y ,
(x.y)
(X, y) (xy)”
Xp»
U (X| y) //( ( P yp)
0 X o6& - X
(X1 ¥p)
{c) Step 2 : Rotate it (d) Step 3 : Translate back
about the origin to the original position

Fig. 4.6
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The translation matrix to move point (xp, yp) to the origin is given as

1 0 0
T =10 1 0
X Yy ]

| a
I—sinU cos0 U‘

o o

The translation matrix to move the center point back to its original position is given as

' I 0 o'i

T2=i0 1 0l
! |
X Yo 1)
Therefore, the overall transformation matrix for a counterclockwise rotation by an angle
0 about the point (xp, yp) is given as
1 0 0 cos® sin0 0 1 0 0

T -RT, = 0 1 0| {-sin0 cosO O 0 1 0

L—xp -y, 1J 0 0 1] {xp y, 1

cos0 sin® 0 1 0 0
= -sin0 cost 0 0O 1 0
|~ %p cosO+y,sind —x,sin®-y pcost 1 Xo yp 1

I cos0 sin@ 0

1
|
= —-sin0 cos0 OJ ... (4.18),

| ~Xp cosO+y,sinf+x, —x,sin0-y cosb+y, 1
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Ex.4.7:  Performa counterclockwise 45° rotation of triangle A (2, 3), B(5, 5). C (4, 3) about point
- (1, .

Sol.: From equation 4.18 we have

cos0 sin® 0
T -RT, = ~sin B cos 0

~Xp cos0 +y sin0+x, -x,sin0-y, cosO+y, 1

Here, 0 =45° x, = 1 and y, = 1. Substituting values we get
(12 12 0]
T -RT, = |-1/¥2 1/¥2 0]

1 —J2+1 1J

[A’ 2 3 17[1/¥2 1¥2 o0
‘B' =55 1| [-1/¥2 1/¥2 0
|

cl ofa3al] 1 2411
- ; -
~—+1 =+1 1
V2 V2
8
= 1 —+1 1
V2
1 5
—+1 —+1 1
V2 V2 1

4.5 Other Transformations

The three basic transformations of scaling, rotating, and translating are the most useful
and most common. There are some other transformations which are useful in certain
applications. Two such transformations are reflection and shear.

4.5.1 Reflection

y
A reflection is a transformation that
produces a mirror image of an object relative to
4 D an axis of reflection. We can choose an axis of
Original Reflected reflection in the xy plane or perpendicular to the
object object xy plane. The table 4.1 gives examples of some
. common reflections.
- - «

Fig. 4.7 Reflection about y axis
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—_—
Reflected image

Reflection Transformation matrix Original image

4 >

; Reflection about Y-axis

— I
< <

[0 o
Reflection about X axis " 0 -1 0
|

l

Lo o 1)

. -1 0
Retlection about origin ( v ,

| :

d
] ‘l \‘;
Reflection about line 0 0 //
Id
¥=x 100 a
f
[0 0 1]
N \\
\\ \\
T ™
\\ N
. . 0 -1 0 [ e N
Reflection about line S AN
N N
=-x -1 0 0 \\ p \\
0 0 1

Table 4.1 Common reflections
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4.5.2 Shear

A transformation that slants the shape of an object is called the shear transformation.
Two common shearing transformations are used. One shifts x coordinate values and other
shifts y coordinate values. However, in both the cases only one coordinate (x or y) changes
its coordinates and other preserves its values,

4.5.2.1 X shear

The x shear preserves ths\?y coordinates, but changes the x values which causes vertical
lines to tilt right or leftas shown in the Fig. 4.8. The transformation matrix for x shear is given
¥

as
~ /

<

(a) Original object

0

(b) Object after x shear

Fig. 4.8
1 00
Xsh =|{Sh, 1 0
0 01
x' = x+Sh_ - y and
y =y ... (4.19)

4.5.2.2 Y shear

The y shear preserves the x coordinates, but changes the y values which causes
horizontal lines to transform into lines which slope up or down, as shown in the Fig. 4.9.
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(a) Original object

0

(b) Object after y shear

Fig. 4.9

The transformation matrix for y shear is given as
1 Sh . 0

Y_sh =10 1 0

[O 0 1

x' = x and y'=y+§r1-x .. (4.20)

4.5.2.3 Shearing Relative to Other Reference Line

We can apply x shear and y shear transformations relative to other reference lines. In
x shear transformation we can use y reference line and in y shear we can use x reference line.

The transformation matrices for both are given below :

o1 0 01[
x shear with y reference line:|  Sh, 10
L_Sh x Y ref 01
1 Sh y 0
y shear with x reference line : | 0 1 0
_O - Sh y il.cf 0
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Ex.4.8:  Apply the shearing transformation to square with A(0,0), B(1,0), C(1, 1) and D (0, 1) as
given below

a) Shear parameter value of 0.5 relative to the line yuy = - 1
b) Shear parameler value of 0.5 relative to the line xpy = - 1
Sol.: a) Here Shy =05 and yu = -1
Al AT
_ r 1 0 01
Bt
= L1 sh, 10
C C |
[=Shy - v, 01
D’ | D)
0 0 1]
i 00
1 01
= 05 1 0
11 1]
05 0 1]
01 1]
(0.5 0 1]
1.5 01
2 11
|11 1
Y y
D(0,1) C(1,1) D'(1,1) C'(2,1)
A(0, 0) B(1.O) , X
0 0| AY0.50) B'(1.5.0)
(a) Original square (b) Sheared square

Fig. 4.10



e S e T s Ll L s L e e

Iy = e e
O e Sy

S

Computer Graphics 128 2-D Geometric Transformation
b) Here Sh, = 0.5 and x = - 1
f'A 1) FA 7
1 sh, 0
B’ B
= 0 1 0
C C
0 ‘—Sh y .XI'L'f 1
_D,J -DJ
[0 0 17 [0 05 17
1 05 0
1 01 1 1 1
= 0 1 0]=
1 11 ! 1 2 1
0 0.5 1_]
_O 1 1J _0 1.5 1J
y
C(1.2)
Y4
D(0,1.5)
B(1.1)
D(0,1) C(1.1)
A(0. 0.5)
A(0, 0) B(1,0) «
0 0
(a) Original square (b) Sheared square

Fig. 4.11

It is important to note that shearing operations can be expressed as sequence of basic
transformations. The sequence of basic transformations involve series of rotation and

scaling transformations.

Ex.4.9:  Show how shear transformation may be expressed in terms of rotation and scaling.

Sol.: The shear transformation matrix for x and y combinely can be given as
1 Sh y 0
Sh, 1 0
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We have scaling matrix and rotation matrix as given below
S, 0 0 cosO sin0 0

S=(0 S, 0 R=[-sin® cosO O

y

0 0 1 0o 0 1

If we combine scale matrix and rotation matrix we have,
[ S, cos0  S,sin0 0

S'R- = —Sy sin0 S), cosO O

0 0 1

Comparing shear matrix and S- R matrix we have

Shy = -S5,sind
Shy = S:sin®
S.cos0 =1 and

Sycos0 = 1
Sk = 1 and
cos9
Sy = !
cosY

Substituting values of Sy and Sy we get,

Sh, = - 1 . sinB=-tan 6
cos0
Shy = ! . sin6= tan©
’ cosf

Therefore, the shear transformation matrix expressed in terms of rotation and scales is
{ 1 tano 0

—tan® 1 0 v S5xcos0=5,cos0=1
0 0 1
where 0 : angle of rotation

S: ! xscale and

Sy : yscale
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4.6 Inverse Transformations

When we apply any transformation to point (x, y) we get a new point (x/, y ). Sometimes
it may require to undo the applied transformation. In such a case we have to get original
point (x, y) from the point (x, y'). This can be achieved by inverse transformation. The
inverse transformation uses the matrix inverse of the transformation matrix to get the
original point (x, y). The inverse of a matrix is another matrix such that when the two are
multiplicd together, we get the identity matrix.

IFthe inverse of matrix 1is T !, then

TT!Y = T-T=1| ' - (4.21)

’

where Lis the identity matrix with all elements along the major diagonal having valuce 1
and all other clements having value zero.

The elements for the inverse matrix T 1 can be calculated from the clements of T as

tll : = e e (422)

where t; ! is the clement in the it row and " column of T-1, and Miiis the (n - 1) by
i } )

(n—1) submatrix obtained by deleting the " row and it column of the matrix A. The det M;i
and det Tis the determinant of the My and T matrices.

The determinant of a 2 x 2 matrix is

Lty tp

ty by |

The determinant of a 3 x 3 matrix is -
det T =t} (b2t~ tan ta2) =ty - (t2 t3y — b3 ty) + r - (t2y taa— L2 b)) . (4.24)
In general form, the determinant of T is given by
detTj = D t. (- 1)i" det M; ... (4.25)

where M is the submatrix formed by deleting row i and column j from matrix T.

The inverse of the homogeneous coordinate transformation matrix can be given as

b ¢ 0

o]

ae—bd |

a d 07" [ e -d 0
I
} i
! |
| i
' i
|Lbf—ce cd—af ae-bd

1
-b a 0 ;
|
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It is important to note that the elements of inverse matrix T~ can be calculated from the
element of T as
t = ————— ... (4.26)
det T
In the above equation the term det T is in the denominator. Hence, we can obtain an
inverse matrix if and only if the determinant of the matrix is nonzero.

Solved Examples

Ex. 4.10: Find out the final coordinates of a figure bounded by the coordinates (1, 1),(3,4), (5, 7),
(10, 3) when rotated about a point (8, 8) by 30° in clockwise direction and scaled by two
units in x-direction and three units y direction.

Sol.: From following equation we have the transformation matrix for rotation
about an arbitrary point given as
[ cos0 sin0 0]
TRT,=| -sin0 cos0 Ol
’ i
\_—xp cosO+y, sin0+x, -x,sin0-y cosO+y, ]J

In this case, it is clockwise rotation therefore we take value of 0 negative.

1 1 1
cos(-30) sin(-30) 0
3 41
~TLRT, = —sin(~30) cos(~30) 0
5 7 1 !
—8x cos(—30) +8x sin(-30) + 8 —8x sin(-30) —8x cos(-30) + 8 1_[
110 3 1]
1 1 1]
0.866 -05 0
3 41
= 0.5 0.866 0
5 7 1
-2.928 5.072 1
10 3 1] /

-1.562 5.438 1]
1.67 7.036 1

4.902 8.634 1

|7.232 2,67 1
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1362 5.438 1
: 1200
1.67  7.036 11! '
[ R.T,S = 103 oi
4.902 8.634 i
{o 0 1]

(7.232 2,67 1

[-3.124 16.314 1]
| 334 21108 1

9.804  25.902 |
|

14464 8.01 1]

Ex. 411 Show Hat transformation matrix for a reflection about a line Y = X is equivalent to
reflection to X- axis followed by counter - clockwise rotation of 90~

Sol.: The transformation matrix for reflection about a line Y = X is given as
- -
(01
! :
1o

The transformation matrix for reflection about x-axis and for counter clockwise rotation
of 90 are given as

1 0_| cos(90) sin(90)]

|

[ and
[o -1 ~sin(90) cos(90) |

Hence,

0 -111-1 0
0 1

- ... Proved
1 0

Ex.4.12: Find out final transformation matrix, when point P (x, y) is to be reflected about a line

y=mx+C.
Sol.: Equation of line :
y=mx+C

slope = m y intercept = C
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Fig. 4.12
We can relate slope m to angle 0 by equation
m = tan{
0 = tan 'm
where 0 1s ininclination of line with respect to x axis.

Translational matrix can be given as

1 0 ()~|

LO —c 1
Rotational matrix to match the given line with x axis can be obtained as

[cos0  -sin0 0]

R, = |sin0  cos® Ol [ Note : angle of rotation = -0 |
|

o 0 1J

Reflection matrix about x axis

1 00
M=10 -1 0
0 01

Inverse transformation matrices,
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l' cost sin0 0] 10 0]

| ;

R;' =|-sin® cos8 0] T"'={0 1 0
| |

0 0 1J 0 c 1l

. Final transformation matrix can be obtained as
_ Y
Ry = T-R,-M-R," -1
As we have tan 0 = m, using trigonometry we can obtain

sin = L, cose=;
vm? +1 m? +1

c0s26 sin 20 0‘[

Ry 5in 20 -cos20 0 |
| —csin20  ¢(1 +cos20) 1J

By substituting values of sind and cos0 we have,

2
1 qm %m 0
m-+1 m- +1
R, = 7;m m? -1 0
m° +1
-2cm 2¢
2 —5— 1
m°+1 m-+1

Ex.4.13:  Derive the appropriate 2D transformation which reflects a figure in point (0.5, 0.5)
Sol.: Translating given point to origin

1 0 O
T=]20 1 0

05 -05 1

Now obtaining reflection of the object about origin
-1 0 0

Translating point back to original position.
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1 0 0
T'=10 1 0]
05 05 1J‘|

The transformation can be given as

Ry = T-M-T"
-1 0 01
R.,.=! 0 -1 Ul
|
i
11 1

Ex.4.14: Find out the co-ordinates of a figure bounded by (0,0) (1, 5) (6, 3) (= 3, = 4) when reflected
along the line whose equation is y = 2x + 4 and sheared by 2 units in x direction and 2

units in y direction.
Sol.: Equation of the line : y = 2x + 4

slope = 2andy intercept = 4

0 = 63.43°
y L
(0.4)
-1 -1
0= tan m=tan 2
/ '
Fig. 4.13
Translational matrix can be given as
1 0 0
T=10 1 0O
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For matching of given line with x axis we have

For reflection about x axis we have

[ cos(-63.43) sin(-63.43) 0

-sin(-63.43) cos(~63.43) 0
| 0 0 1
'0.4472 -0.8944 0

0.8944  0.4472 0

0 0 1

L

1 0 0
0 -1 0
0 01

Inverse transformation matrices are

R} =

[ cos(~63.43) -sin(63.43) 0

+5in(~63.43) cos(-63.43) 0

0 0 1
[0.4472  0.8944 0]

-0.8944 0.4472 0!
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For shearing along y axis

The resultant transformation matrix can be obtained by

Ry = T-R,-M-R;' - TS, .S,

Final co-ordinates of the given figure can be obtained by

L

Calculations are left for the students as an exercise

[

A

B

C

D

Ex.4.15: Show that 2D reflection through X axis followed by 2-D reflection through the line
Y = - X'is equivalent to a pure rotation about the origin.

Sol.: 2D reflection about X axis
1
R, 0
[0

2D reflection about Y = - X

0 0
-1 0
0 1]



Computer Graphics 138 2-D Geometric Transformation

R, = R -R’

0 -1 0
=11 0 o
0 01

For pure rotation about origin we have

" cos® —sind 0

R = |+sin® cos® O

L 0 0 1
where 8 is angle of rotation
put 0 = 90°
0 -1 0
R,=11 00
0 01
R; = R, Hence the result

Ex. 4.16 Prove that successive 2D rotations are additive; L.e.
R(®,) - R(®,) = R (8; + 0,)

Sol.: We can write rotation matrix R(9,) as
0s0 in 0 cos6 in 6
R@,) = c's | sin@, andR@,) =| ,  sin®,
-sin®;  cosB, —-sinB,  cosB,
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" cosO, sin(-)ﬂ[
R@®,)-R®,) = x

[ cos8, -cosB, +sinB; -(-sinb,)

[ cos(0; +6,) sin(6; +0,)

|—sin(0, +8,) cos(0, +6,)

" since,

{ cosU, sin@ﬂ|
-sin®,  cos0, | |-sing, cos0, |

cos, -sin@, +sin6; - cosh,

—sin@; -cosh, +cosB; -(-sinB,) -sin6, -sind, +cos0; - cos0,

cos () + 0,) = cos 6, cos 0, - sin 8, sin 0,

sin (0, +8,) = cos 6, sin 0, + sin 0, cos 0,
Ex.4.17  Prove that 2D rotation and scaling commute if S, = S, 0r 0 = nnfor integral n and that

otherwise they do not.

(Dec-99)

Sol.: The matrix notation for scaling along S, and S, is as given below

S = Px 0]a11d

) Lo sui

The matrix notation for rotation is as given below

R = cosB sin©
" | -sin® cosf

S
S-R

x 0 [cose
—sinb
_O S,

[ S,cos6 S, sind

sin®
cos©

or

R-S

1}

_—S ySin® S, cos6
[S,cos86 S sind
8, =5, ..

| —SxsinB S, cosB ’

- 8 =nn where n is integer ...II

[ cos®  sin® 5 0

_—sine cos0 0 Sy
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[S.cos0 S, sinf
-5,sin0 Sy cosV

[S,cos0) S, sin0

= Se=5, .11
L»'—stin() S, cos0
-5, 0
or = + 0 =nm where nis integer ... 1V
' 0 -3,

From equations 1and 11, and equations ITand 1V itis proved that 2D rotation and scaling
commule if S, = S, or 0 = nnfor integral n and that otherwise they do not.

Ex.:4.18 A circular disc of diameter "d" is rolling down the inclined plane starting from rest as
shown below. Assume there is no slip and develop the set of transformation required to
produce this animation and also write a program. (Dec-96)

I —-
Fig. 4.14
Sol.: For rolling a circular disc of diameter d down the inclined plane starting

from rest we have to consider the movement of disc in x direction and in y direction
along with the rotation of disc. As length is greater then height we increment x by 1
unit and y by h// units i.e.

x+1

y +h/l

X
y

The increment of rolling angle can be calculated by relating of a circle with the diagonal
length of inclined plane as given below

(th +12/nd)x360
1

It is necessary to rotate two lines on the disc by d after increment of x and rotation is
clockwise. The rotation matrix necessary for this purpose is

do =
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[cos® —sin ()7|
R = |
Lsin 0 cos0

Every time rotated coordinates are calculated at the origin and at time of line drawing
these coordinates are converted into actual coordinates by adding current x and y
coordinates to it. Let us the listing of 'C' code for above animation.
tinclude<stdio. h>
flinclude<yraphics.h>
finclude<math.h>
main ()

{

int gd,gm;

double d, h,l,x,y, stx, sty,dx,dy,d0,sin0,cos0,angle=0,theta, x offset,
y_otfsci;

int i,3,k,ball|d4]{3]={1},ball1(4](3)=(1};

float pi = 3.142;

detcatgraph (&gd, &gm) ;

initgraph (&gd, &ym, "") ;
/ Read starting x,starting y, height, lenth, diameter

orintf ("Enter starting x coordinate :");
scanf ("¥1L", &x);

printf ("Enter starting y coordinate :");
scanf ("s1lf", &y)

printf ("Enter height :");

scant ("%1f", &h);

printf ("Enter length :");

scanf ("%1£f",&l);

printf ("Enter diameter :");

scanf ("%1f", &d);

theta = atan(h/1);

v offset = d/(2*cos(theta))-d/2*tan(theta);
x_offset = d/2;

circle(x+x offset,y-y offset,d/2);
line(x,y,x,yth);

line(x, yt+h,x+1,y+h);
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ine {4,y xtl, 0
st = X;

sty = ¥:
ball 0] (0]= 0y
ball (0] [1}= 0-d/2;
pall{1]1{0])= 0;
pall(1]1{i]l= 0+d/2;
baili2][0)1= 0-d/2;
balli2l11l]= 0;
ball(3)(0]= 0+d/2;
ball[3]1([1]= O;
balll[0](0)= O:
balll{0]1[1]= 0-d/2;
balll[1](0)= 0;
Dalll(11(11= 0+d/2;
walliii2lid)= 0-d/2:
poalli{2i{il)= 0;
balll[31(0)1= 0+ad/2;
balll[3)[1]= 0;

line(ball[O][O]+x+x_offset,ball[0][1]+y—y_offset,ball[1][O]+x+xﬁoffset,
ball(1l][1)+v-y offset);

line(ball(2}[0]+x+x_offset,ballf2)[1)+y-y_offset,ball{3][0]+x+x_offset,

ball(31{1]+y-y offset);

dy = h/1l;

dx = 1;

d0= (sqgrt (h*h+1*1)/ (pi*d)*360)/1;

i = 0;

do

{

setcolor (0);

circle(x+x offset,y-y offset,d/2);

line (balll[0] [0]+x+x offset,balll[0]{1]+y-y offset,balll[l][0)+x+d/2,
balll[1][1]+y-y offset);

line(balll[2][O]+x+xmoffset,balll[2][1]+y—y_offset,balll[3][O]+x+d/2,
balll[3][1)+y-y offset);

sin0 = sin(angle*pi/180);

cos0 = cos(angle*pi/180);
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for(3=0;3<4;3++)
{
palll([3]{0] = ball([j])[0]*cos0 + ball{j)(1]*(-sin0);
balll{3j} (1] = ball{j]1f01*sin0 + ball(j]([1]*(cos0);
}
setcolor (15);

angle=angle+d0;

x=x+dx;

y=yrdy:

line (stx,sty,stx+l,styth);

line(balll[O][0]+x+x_offset,balll[0][1]+y—y~offset,balll[1][0]+x+x_offset
,balll (1) {1]l+y-y offset);

line(balll[2][O]+x+x_offset,bal]l[2][1]+y—y_offset,balll[3][O]+x+x_offset
,balll[3)(1]+y-y offset);

circle(x+x _offset,y-y_offset,d/2):

i=i+l;

delay(1000) ;

} while(i<l-d/2|ly<h+sty-y offset-d/2);

getch();

closegraph{();

}
Review Questions

1. Give the 2-D transformation matrix for
a) Translation
b) Rotation and
¢) Scaling
2. What is the need of homogeneous coordinates ? Give the homogeneous coordinates for
translation, rotation and scaling. -

3. What do you mean by composite transformation ? How it is useful ?
4. Derive the transformation matrix for rotation about arbitrary point.
5. Write a short note on

a) Reflection

b) Shearing transformation

6. Explain the inverse transformation. Derive the matrix for inverse transformation.
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University Questions

I Develop a 2D rolation and scaling transformation matrices with respect to a fixed point

P (XP/ )l}))
2

(Dec-96)

A circular disc of diameter 'd'is rolling down the inclined planc starting from rest as shown

below. Assume there is no stip and develop the set of transformation required to produce this

animation.

(Dec-96)

- T ————

A

l

Fig. 4.15

3. What are the properties for concatenation of transformations ? What is the sequence of
transformation required to change the position of object, shown in figure (a) Lo figure (b).

(Dec-98)
y-axis ° — (0.0) x-axis
/
\a
o) e
cl=7" i
S —
(0.0) X-axis .
—y-axis

(a)

(b)

Fig. 4.16

4. What are homogencous co-ordinates? What is the significance of this co-ordinate system ?

5. Write a short note on shearing.

6. For the following figure gencrate transformation matrix.

(May-99)
(May-99)
(May-99)

Initial I
positiOM Side 1
1 L
| i
| i 1
! |
[} 1
} f
-2 -1
—1
-2

Final
position

Fig. 4.17
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[2 0 o]
Ans: T={0 -1 0

61 1
7. Why are matrices used or implementing transformations ? (May-99)
8. Develop the procedure to implement scaling as a raster transformation of a pixel block.

(Dec-99)

9. Prove that 2D rotation and scaling commute if 5, = S, or § = nn for integral n and that
otherwise they do not.

(Dec-99)
10. Proove that successive 2D rotations are additive; i.e.
R(0,)-R(6,) =R (0, + 0,) ' (Dec-2000)
11. Develop a 2D scaling transformation matrix with respect to a fixed point P(x, yy).

(Dec-2000)

12. Explain the orthogonal property of rotational matrix. Using the orthogonal property of
rotational matrix derive the transformation matrices required for transformation between

co-ordinate system. (May-2001)
yW yW
Yv
XV
Yy
RO
VXW (0,0) X, Xy
Fig. 4.18

13. Consider a wheel of diameter d rolling down on the inclined plane as shown in the Fig. 4.19
given below. Give the sequence of transformations required to perform this animation
assuming that there is no slip. (Dec-2001)

A

-— T ——

Fig. 4.19
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14. Develop the transformation procedure to display the italic characters, given a vector font
definition. That is all character shapes in this font are defined with straight line segments and
italic characters are to be formed from this information with transformation operation.
Specify the values of each parameter required for transformation operation. Illustrate the
procedure by taking suitable example. (Dec-2001)

15. Write a short note on homogenous co-ordinates. (May-2002)

16. Show that two successive reflections about either of the coordinate axes is equivalent to a
single rotation about the coordinate origin. (May-2003)

Qaa




2-D Viewing and Clipping

5.1 Introduction

Typicallyf‘a graphics package allows us to specify which part of a defined picture is to
be displayed and where that part is to be displayed on the display device. Furthermore, the
package also provides the use of the scaling, translation and rotation techniques]described
in the previous chapter[to generate a variety of different views of a single picturé {We can
generate different view of a picture by applying the appropriate scaling and translation.

{While doing this, we have to identify the visible part of the picture for inclusion in the
display image. This selection process is not straight forward. Certain lines may lie partly
inside the visible portion of the picture and partly outside. These lines cannot be omitted
entirely from the display image because the image would become inaccurate.] This is
illustrated in Fig. 5.1y The process of selecting and viewing the picture with different views is
called windowing, and a process which divides each element of the picture into its visible
and invisible portions, allowing the invisible portion to be discarded is called clipping ]

N\_/]
\'4

<
<<

<C P2 < 4

e

2\

2>
> >

7N

Fig. 5.1

In this chapter we are going to discuss the concepts involved in windowing and various
clipping algorithms

5.2 Viewing Transformation

We know that the picture is stored in the computer memory using any convenient
cartesian coordinate system, referred to as world coordinate system (WCS). However,
when picture is displayed on the display device it is measured in physical device
coordinate system (PDCS) corresponding to the display device. Therefore, displaying an

(147)
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image of a picture involves mapping the coordinates of the points and lines that form the
picture into the appropriate physical device coordinate where the image is to be displayed.
This mapping of coordinates is achieved with the use of coordinate transformation known
as viewing transformation.

The viewing transformation which maps picture coordinates in the WCS to display
coordinates in PDCS is performed by the following transformations :

¢ Normalization transformation (N) and
* Workstation transformation (W)

5.2.1 Normalization Transformation

We know that, different display devices may have different screen sizes as measured in
" pixels. Size of the screen in pixels increases as resolution of the screen increases. When
picture is defined in the pixel values then it is displayed large in size on the low resolution
screen while small in size on the high resolution screen as shown in the Fig. 5.2. To avoid this
and to make our programs to be device independent, we have to define the picture
coordinates in some units other than pixels and use the interpreter to convert these
coordinates to appropriate pixel values for the particular display device. The device
independent units are called the normalized device coordinates. In these units, the screen
measures 1 unit wide and 1 unit length as shown in the Fig. 5.3. The lower left corner of the
screen is the origin, and the upper-right corner is the point (1, 1). The point(0.5, 0.5) is the
center of the screen no matter what the physical dimensions or resolution of the actual
display device may be.

f N 4 )
@ i \!/ E

- ), \ D
(a) More resolution {b) Less resolution

Fig. 5.2 Picture definition in pixels

0,1 ——0m— (1. 1)

6,0 ~——— 1.0

Fig. 5.3 Picture definition in normalized device coordinates
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The interpreter uses a simple linear formula to convert the normalized device
coordinates to the actual device coordinates.

X = XnXx Xw .. (51

y = ynxYp ...(5.2)
where

x : Actual device x coordinate

y : Actual device y coordinate

xn : Normalized x coordinate

yn : Normalized y coordinate

Xw : Width of actual screen in pixels

Y1 @ Height of actual screen in pixels.

The transformation which maps the world coordinate to normalized device coordinate
is called normalization transformation. It involves scaling of x and y, thus it is also referred
to as scaling transformation.

5.2.2 Workstation Transformation
The transformation which maps the normalized device coordinates to physical device

coordinates is called workstation transformation.

The viewing transformation is the combination of normalization transformation and
workstation transformations as shown in the Fig. 5.4. It is given as
V = N-W ... (5.3)

World o Normalized i Device
coordinates ———s] Normallzatlion Workstathn ocordinates
(WC) transformation § coordinates transformation (DC)
(NC)

Viewing transformation

Fig. 5.4 Two dimensional viewing transformation

We know that world coordinate system (WCS) is infinite in extent and the device
display area is finite. Therefore, to perform a viewing transformation we select a finite world
coordinate area for display called a window. An area on a device to which a window is
mapped is called a viewport. The window defines what is to be viewed; the viewport
defines where it is to be displayed, as shown in the Fig. 5.5.

The window defined in world coordinates is first transformed into the normalized
device coordinates. The normalized window is then transformed into the viewport
coordinate. This window to viewport coordinate transformation is known as workstation
transformation. It is achieved by performing following steps :
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Window Yv max K
Yor max View port

i oo X ./
xV min xV max
Xw min Xy max
World coordinates Device coordinates

Fig. 5.5 Window and viewport

1. The object together with its window is translated until the lower left corner of the
window is at the origin.

2. Object and window are scaled until the window has the dimensions of the viewport.

3. Translate the viewport to its correct position on the screen.
This is illustrated in Fig.5.6.

Object Translate

!
" Window \)

Scale Translate

i)

- =4

Fig. 5.6 Steps in workstation transformation

Therefore, the workstation transformation is given as
W =TS5T- ... (5.4)
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The transformation matrices for individual transformation are as given below :

[ 0 0]
T = : () I 0
;_—mein Yiwmin 1 i
s, 0 07
S = l 0 S, ()’ where  S. = Xy max T X min
|L 0 0 ]J X max = Xw min
G, = Lymax 7Y vnin
Ywman 7Y wmin
1 0 o
T-1 = ; 0 1 0 f
i_x\‘ nin Y v min 1}

The overall transformation matrix for W is given as

W = T.5.T-
1 o o] fs, 0 0][ 1 0 0
=l 0 1ol fo s of| o 1 0
- X\‘v min ~ —Y wmin 1 0 0 1 Xy min Y v min 1
l( S, 0 01
= | 0 S, 0l
Ij‘\fmin = X\ min 'Sx Y vmin T Y w min S\ ]_!
The Fig. 5.7 shows the complete viewing transformation.
World o Normalized Device
coordinate —{ Normalization _ Translate coordinates
(WC) transformation | coordinates (DC)
(NC)
Viewing transformation

Fig. 5.7 Viewing transformation

Ex.5.1:  Find the normalization transforination windotw to viewpoint, with window, lower left
corner at (1, 1) and upper right corner at (3, 5) onto a viewpoint witl lower left corner at
0, 0) and upper right corner at (1/2, 1/2).

Sol. : Given : Coordinates tor window
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Xwmmn = 1 y womin = 1

Xw max — 3 Ywmax = 5
Coordinates for view port

Xemn = U Yy min =0

Xy = 1 /2 = 05 )'\'nm\ = ]/2 = ()5
We know that,
X - X

G = Svmay T v min
Xy max ~ Xw min
_05-0
=57
= 025
and S, = Y vmax = ¥ vmin
Y wmax 7Y wmin
_05-0
©5-1
= 0.125
We know that transformation matrix is given as
[ S, 0 0
T-S- Tt = 0 S, 0
| Xvmin T X minOx Y ¢min T \ w minSy 1
[ 0.25 0 0
= 0 0.125 0
10-(1x0.25) 0-(1x0.125) 1
[ 0.25 0 0
= 0 0.125 0
1-0.25 -0.125 1

5.3 2D Clipping

The procedure that identifies the portions of a picture that are either inside or outside of
a specified region of space is referred to as clipping. The region against which an object is to
be clipped is called a clip window or clipping window. It usually is ina rectangular shape,
as shown in the Fig. 5.8.

The clipping algorithm determines which points, lines or portions of lines lie within the
clipping window. These points, lines or portions of lines are retained for display. All others
are discarded.
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Clipping window

/P2 P2
oP11 10 /

PG /P8 PG {
Ps| — L R
Py e . / Ps /

. Py
(a) Before clipping . (b) After clipping

Fig. 5.8

5.3.1 Point Clipping

The points are said to be interior to the clipping window if
Xwmin £ X £ Xwmax and
Ywmin < Yy < Y max

The equal sign indicates that points on the window boundary are included within the
window. :

5.3.2 Line Clipping

The lines are said to be interior to the clipping window and hence visible if both end
points are interior to the window, e.g., line P; Pz in Fig. 5.8. However, if both end points of a
line are exterior to the window, the line is not necessarily completely exterior to the window,
e.g. line P7 Pgin Fig. 5.8. If both end points of a line are completely to the right of, completely
to the left of, completely above, or completely below the window, then the line is completely
exterior to the window and hence invisible. For example, line P3 P in Fig. 5.8.

The lines which across one or more clipping boundaries require calculation of multiple
intersection points to decide the visible portion of them. To minimize the intersection
calculations and to increase the efficiency of the clipping algorithm, initially, completely
visible and invisible lines are identified and then the intersection points are calculated for
remaining lines. There are many line clipping algorithms. Let us discuss a few of them.

5.3.2.1 Sutherland and Cohen Subdivision Line Clipping Algorithm

This is one of the oldest and most popular line clipping algorithm devcloped by Dan
Cohen and Ivan Sutherland.@"o speed up the processing this algorithm performs initial tests
that reduce the number of intersections that must be calculated. This algorithm uses a four
digit (bit) code to indicate which of nine regions contain the end point of linc. The four bit

codes are called region codes or outcodes. These codes identify the location of the point

relative to the boundaries of the clipping rectangle as shown in the Fig. 5.9.

o
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Each bit position in the region code is used to
! : indicate one of the four relative coordinate positions of
1001 | 1000 | 1010 the pgint with respect to the cli.pping win'do.w : to the
! ! left, right, top or bottom. The rightmost bit is the first
"""""" bit and the bits are set to 1 based on the following
0001 | 209 1 0010 scheme : ' o
Set Bit 1 - if the end point is to the left of
'''''' ! T the window
0101 E 0100 E 0110 Set Bit 2 - if the end point is to the right of
' ' the window
Set Bit 3 - if the end point is below the
Fig. 5.9 Four-bit codes for nine window
regions
Set Bit 4 - if the end point is above the window

Otherwise, the bit is set to zero.

Once we have established region codes for all the line endpoints, we can determine
which lines are completely inside the clipping window and which are clearly outside. Any
lines that are completely inside the window boundaries have a region code of 0000 for both
endpoints and we trivially accept these lines. Any lines that have a 1 in the same bit position
in the region codes for each endpoint are completely outside the clipping rectangle, and we
trivially reject these lines. A method used to test lines for total clipping is equivalent to the
logical AND operator. If the result of the logical AND operation with two end point codes is
not 0000, the line is completely outside the clipping region. The lines that cannot be
identified as completely inside or completely outside a clipping window by these tests are
checked for intersection with the window boundaries.

Ex.5.2: Consider the clipping window and the lines shown in Fig. 5.10. Find the region codes for
each end point and identify whether the line is completely visible, partially visible or
completely invisible.
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Sol..: The Fig. 5.11 shows the clipping window and lines with region codes.
These codes are tabulated and end point codes are logically ANDed to identify the
visibility of the line in table 5.1.

1001 1000 1010
Pg\
Py / P2 A
Pio
0001 P, 0000 Pg 0010
P /
PS /
________________ : R REEEETEE PR
| P, / ;
I ]
0101 : 0100 ! 0110
) )
H I
1 1
s 1 I
Fig. 5.11
Line End Point Codes Logical ANDing Result
PP 0030 0000 0000 Completely visible
P3Py 0001 0001 0001 Completely invisible
Ps Pe 0001 0000 0000 Partially visible
P7 Py 0100 0010 0000 Partially visible
Py Pw 1000 0010 0000 Partially visible
Table 5.1

The Sutherland - Cohen algorithm begins the clipping process for a partially visible line
by comparing an outside endpoint to a clipping boundary to determine how much of the
line can be discarded. Then the remaining part of the line is checked against the other
boundaries, and the process is continued until either the line is totally discarded or a section
is found inside the window.

This is illustrated in Fig. 5.12.
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P2

(a) (b) (c)

(d) (e)
Fig. 5.12 Sutherland-Cohen subdivision line clipping

As shown in the Fig. 5.12, line P P, is a partially visible and point Py is outside the
window. Starting with point Py, the intersection point Plis found and we get two line
segments Py - P and P -P2. We know that, for Py - P! one end point i.c. Py is outside the

window and thus the line segment Py - P, is discarded. The line is now reduced to the section
from I’ to P2. Since P is outside the clip window, it is checked against the boundaries and
intersection point P is found. Again the line segment is divided into two segments giving
D/ - P and P, - P2. We know that, for P, - P> one end point i.e. P2 is outside the window and
thus the line segment P;- P2 is discarded. The remaining line segment P, — Pyis completely
inside the clipping window and hence made visible.

The intersection points with a clipping boundary can be calculated using the
slope-intercept form of the line equation. The equation for line passing through points
Pi (x1, yi) and P2 (x2, y2) is

y = m(x-xi)+yr oOr y =m(X—x2) +y2 ... (5.5)
where m = Yaz ¥ (slope of the line)
Xy =X

Therefore, the intersections with the clipping boundaries of the window are given as:
Left DXLy = m(e-x)t+yr ; m#F®

Right @ xgr,y m(xg—x1)+yr , m#x

Top Dyn X = X|+(l)(}”l‘—)"l); m =0
m

Bottom: ys, X

X +(lj(yu—y|) ;o m=0
m
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Sutherland and Cohen subdivision line clipping algorithm :

Py

(Wx,, Wy,) /

/

pd

Py

(Wxo, Wy,)

&

[%]

Fig. 5.13

Read two end points of the line say P, (x|, y;) and Py (x4, y,).

Read two corners (left-top and right-bottom) of the window, say (Wx |, Wy, and Wx,),
Wy,).

Assign the region codes for two endpoints P and P, using following steps :

Initialize code with bits 0000

Set  Bitl - if (x <Wx,)

Set  Bit2 - if (x>Wxy)

Set  Bit3 - if {y<Wyy)

Set  Bit4 - if (y>Wy))

Check for visibility of line P, P,

a) Ifregion codes for both endpoints P; and P, are zero then the line is completely
visible. Hence draw the line and go to step 9.

b) If region codes for endpoints are not zero and the logical ANDing of them is also
nonzero then the line is completely invisible, so reject the line and go to step 9.

¢) If region codes for two endpoints do not satisfy the conditions in 4a) and 4b)the
line is partially visible.

Determine the intersecting edge of the clipping window by inspecting the region
codes of two endpoints.

a) If region codes for both the end points are non-zero, find intersection points Pll
and P._,’ with boundary edges of clipping window with respect to point P; and
point Py, respectively

b) If region code for any one end point is non zero then find intersection point P,' or
Pz’ with the boundary edge of the clipping window with respect to it.

Divide the line segments considering intersection points.

Reject the line segment if any one end point of it appears outsides the clipping
window.

Draw the remaining line segments.
Stop.
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'C’ code for Sutherland and Cohen Subdivision Line Clipping Algorithm

(Softcopy of this program is available at vtubooks.com)

#include<stdio.h>
Finclude<conio.h>
finclude<stdlib.h>
tinclude<dos.h>
#include<math.h>
fincluae<graphics.h>
/* Defining structure for end point of line */
LypeaeT struct coordinate
int x,vy:
char codel(4);
yPI
void drawwindow () ;
void drawline (PT pl,PT p2,int cl);
PT setcode (PT p):
int visibility (PT pl,PT p2);
PT resetendpt (PT pl,PT p2);
main ()
{
int gd=DETECT, gm,v;
PT pl,p2, ptemp;
initgreph (&gd, &gm, ™ "J;
cleardevice () ;
printf ("\n\n\t\tENTER END-POINT 1 (x,y): ");
scanf ("%d, %d", &pl.x, &pl.y);
printf ("\n\n\t\tENTER END-POINT 2 (x,y): ");:
scanf ("%d, %d", ¢p2.x, &p2.y) ;
cleardevice () ;
drawwindow () ;
getch();
drawline (pl,p2,15);
getch();
pl=setcode (pl);
pZ=setcode (p2);
v

=visibility(pl,p2);
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switch (v)
!
case U: cleardevice(); /* Line conpletely visible */

drawwlndow () ;

[N}

drawline(pi,p2,15);
preak;
case 1: cleardevice(); /* Line completely invisible */
drawwindow () ;
break;
case 2: cleardevice(); /* line partly visible */
pl=resetendpt (pl,p2);
p2=resetendpt (p2,pl});
drawwindow () ;
drawline(pl,p2,15);
break;
}
getch () ;
closegraph();
return(0);
/* Funcrion to draw window */
void drawwindow ()
{
setcolor (RED) ;
line (150,100,450,100);
line(450,100,450,350);
line (450,350,150, 350);
line (150,350,150,100);
!

/* Function to draw line between two points

void drawline (PT pl,PT p2,int cl)
{

setcolor(cl);
line(pl.x,pl.y,p2.%,p2.Y):

1
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/* Function to set code of rhe noordinates

Pl sercode (PT p)

Pl oprenp;

if(p.ya100)

ptemp.code{0)="1"; /* Tur */
else

premp.code{0]="0";

if(p.y~350)

ptemp.code(1]="1"'; /* BOTTOM */
clse

ptemp.code[1]1="0";

1L (p.x>450)

ntemp.code(2]="1"; /* RIGHT */

ptemp.code[21="0";
if (p.x<15Q0) /* LEFT */

ptemp.code{3}="1";

ptemp.code[3]="0";
ptemp.x=p.x;
pLemp.y=p.ys
return(ptemp) ;

i

/* Function to determine visibility of line

int visibility (PT pl,PT pZ)

{

int i, flag=0;

for (i=0;1i<4:i++)

{
if((pl.code[i)!="0") 1| (p2.code[i}!="0"))
flag=1;

}

if (flag==0)

return (0} ;

el
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LE(pl.ceueil==nZ. codaeli]) as(pi.codeiij=="1"))

versurn (g
revurn (#) ;

i

/* Function to find new end poinus

P resetendpt (T pl, PT p2)
{

PT tremp;

int ox,y,1i;

float m, k;

if( pl.code[3]=="1") /* Cutuing LT kdge */

€=150;

if(pl.code(2]=="'1") /* Curriig RUIGHT Edge */
x=450;
if((pl.code[3]=="1"){!l(pl.code{]=="1"))

{

m=(float) (p2.y-pl.y)/(p2.x-pl.x);
k=(pl.y+(m*(x-pl.x)));

temp.y=k;

tLemp. Xx=x;

for(i=C;i<4;i++)
temp.code[1i}=pl.code(i];

if (temp.y<=350&stemp.y>=100)

return(temp) ;

}
if (pl.code[0}=="'1") /* Cutting TOP Edge */
y=100;

if (pl.code ([1])=='1"') /* Cutting BOTTOM Edge */
y=350;
if ((pl.code(Cl=="1") |l (pl.code{l]l=="1"}))

m=(float) (p2.y-pl.y)/ (p2.x-pl.x%x);
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k= (float)pl.z+ (float) (y-pl.y)/m;

Unp . X=K;

for(i-4;i<4;i++)
cemp.cede[i}=pl.code(i];
return{temp) ;
}
else
return(pl);
}
5.3.2.2 Midpoint Subdivision Algorithm

We have seen that, the Sutherland Cohen subdivision line clipping algorithm requires
the calculation of the intersection of the line with the window edge. These calculations can
be avoided by repeatatively subdividing the line at its midpoint.

Like previous algorithm, initially the line is tested for visibility. If line is completely
visible it is drawn and if it is completely invisible it is rejected. If line is partially visible then
it is subdivided in two equal parts. The visibility tests are then applied to each half. This
subdivision process is repeated until we get completely visible and completely invisible line
segments. This is illustrated in Fig. 5.14. (seec on next page)

As shown in the Fig. 5.14, line P1 P2 is partially visible. It is subdivided in two equal parts
P, Py and P P2 (sce Fig. 5.14(b)). Both the line segments are tested for visibility and found to
be partially visible. Both line segments are then subdivided in two cqual parts to get
midpoints Py and Ps (see Fig. 5.14 (). It is observed that line segments PP, and PsPz are
completely invisible and hence rejected. However, line segment P5Ps is completely visible
and hence drawn. The remaining line segment PyP; is still partially visible. It is then
subdivided to get midpoint Py. It is observed that PoPs is completely visible whereas PP is
partially visible. Thus PeP3 line segment is drawn and PyPs line segment is further
subdivided into equal parts to get midpoint P7. Now, it is observed that line segment PiP7is
completely invisible and line segment P7P, is completely visible (see Fig. 5.14 (f)), and there
is no further partially visible segment.

Midpoint Subdivision Algorithm :

1. Read two endpoints of the line say P;(x;, ;'1) and P, (xy, yy).

2. Read two corners (left-top and right-bottom) of the window, say (le, Wy, and Wx,,

3.  Assign region codes for two end points using {ollowing steps :

Initialize code with bits 0000
Set Bit 1 - if (x < Wx;)

Set Bit 2 - if (x > Wxy)
Set Bit 3 - if (y < Wyy)
Set Bit 4 - if (y > Wys)
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(a) (b)

P
.2
Ps .-
Py /
—’./
e’
P1
(d)

(e) )

(9)

Fig. 5.14 Clipping line with midpoint subdivision algorithm
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4. Check for visibility of line
a) If region codes for both endpoints are zero then the line is completely visible.
Hence draw the line and go to step 6.
b) 1Ifregion codes for cndpoints are not zero and the logical ANDing of them is also
nonzcero then the line is completely invisible, so reject the line and go to step 6.

¢) Ifregion codes for two endpoints do not satisty the conditions in 4a) and 4b) the
line is partially visible.

: 5. Divide the partially visible line segment in equal parts and repeat steps 8 through 5
. for both subdivided line segments until you get completely visible and completely
5 invisible line scgments.

vl

, 6. Stop.

hi

it ’ S o . N .

g 'C' code for Midpoint Subdivision Line Clipping Algorithm

' (Sottcopy of this program is available at vtubooks.com)

Finclude<stdio.h>

l, ' #include<conio.h>

] #include<stdlib.h>

#include<aos. h>

#include<math.hr

it

Q finclude<graphics. h>

/* Befining structure tor cnd poicn of line */

typedef struct coordinan.

{
H int x,y:
i3 char codel4d];
t P
l void drawwindow () ;
i void drawline (PT pl,PT p2,int cl);
y T o sotcode (PT p) s
i int visibility (PT gl,PT p2);
! PT resetendpt (PT pl,PT p2);
: main ()
(
int gd=DETECT, gm,v;
i PT pl,p2,ptemp;
initgraph (&gd, &gm, " ") ;
f cleardevice () ;
g printf ("\n\n\t\tENTER END-POINT 1 (x,y): ");
im-- scanf ("%d, %d", &pl.x,&apl.vy);
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printf ("\n\n\t\tENTER END-POINT Z (x,y): ");
scanf ("%d, 3d", &p2.x,&p2.vy) ;
cleardevice();
drawwindow () ;

getch () ;
drawline(pl,p2,15);
getch () ;

cleardevice () ;
drawwindow () ;
midsub (pl, p2);

getch();

closegraph ();

return(0) ;

}

midsub (PT pl,PT p2)
{
PT mid;
int v;
pl=setcode (pl);
p2=setcode (p2);
v=visibility(pl,p2):
switch (v)
{
case 0: /* Line conpletely visible */
drawline (pl,p2,15);
break;
case 1: /* Line completely invisible */
break;
case 2: /* line partly visible */
mid.x = pl.x + (p2.x-pl.x)/2;
mid.y = pl.y + (p2.y-pl.y)/2;
midsub (pl, mid) ;
mid.x = mid.x+1;
mid.y = mid.y+1;
midsub (mid, p2) ;

break;
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/o Funcoion to draw window */
voadd dr e boddoan ()

!
L

sotoulor (Ri)

Piec (150,160,450, 100) ;
Pipe (095,100,450, 400) ;
1o (650G,405,15G,400) ;
Pdre: (150,400, 1506,100);
!

/* Function uo draw line bhetween two points

_____________________________________________ */
void drawlince (P11 p7, 1 p2,int 1)

{

setooloricl);

fine(vl.x,0l.y,p2.%x,p2.y):

1

/* Function to set code of the coordinates
____________________________________________ i\/

PP setcode (PT p)

{

P1 otemp;

if(p.y<=100)
pteme.code[0]="1"; /* TO% */
else

ptemp.code[0]="0";
if(p.y>=400)
ptemp.code[1l])='1"; /* BOTTOM */
else

ptemp.code(l]="0";

if (p.x>=450)
ptemp.code[2]="'1"'; /* RIGHT */
else

ptemp.code(2]='0";

if (p.x<=150) /* LEFT */
ptemp.code[3]='1";

else
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ptemp.code(3)="0";
ptemp.x=p.%;
ptemp.y=p.y;
return (ptemp) ;

}

/* Function to determine vigibility of line

int visibility (PT pl, Pl p2)

{

int i,flag=0;

for(i=0;1<4;1i++)

{

if ((pl.code[i]!='0") 1] (pZ.code(i]!="'0")
flag=1;

}

if (flag==0)

return(0);

for(i=0;1i<4;1++)

{

if ((pl.code[i]==p2.code[i]) &&(pl.code(i]=="1"))
flag=0;

}

if (flag==0)

return(l);

return(2);

}

The midpoint subdivision algorithm requires repeated subdivision of line segments and
hence many times it is slower than using direct calculation of the intersection of the line with
the clipping window edge. However, it can be implemented efficiently using parallel
architecture since it involves parallel operations.

5.3.2.3 Generalized Clipping with Cyrus-Beck Algorithm

The algorithms explained above assume that the clipping window is a regular rectangle.
These algorithms are not applicable for non rectangular clipping windows. Cyrus and Beck
have developed a generalized line clipping algorithm. This algorithm is applicable to an
arbitrary convex region. This algorithm uses a parametric equation of a line segment to find
the intersection points of a line with the clipping edges. The parametric equation of a line
segment from P; to P2 is
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P(t)y = Pi+(P2-Py)t ;0<t<1 ... (5.6)
where Lis a parameter, t=0at Py and t = 1 at P

Considera convex clipping region R, fis a boundary point of the convex region R and n
is an inner normal for one of its boundaries, as shown in the Fig. 5.15.

YL/ Boundary point
f

_«—R - convex region

0

Fig. 5.15 Convex region, boundary point and inner normal
Then we can distinguish in which region a point lie by looking at the value of the dot
product n-[ P(t) - f |, as shown in the Fig. 5.16.

T dot product is negative, i.e.

n-[P)-f <0 ... (6.7)

Then the vector () - fis pointed away from the interior of R.

2 1f dot product is vero, i.e.,

n|Pt)-f] =0 ... (5.8)

Then P(t) - fis pointed parallel to the plane containing f and perpendicular to the
normal.

3. If dot product is positive, i.c.
n-[PW-£f] >0 ... (5.9
Then the vector P(t) - f is pointed towards the interior of R, as shown in Fig. 5.16.

P2
f /
] .
v
 nP()-f]>0
n
n.[P(t)-f]<0 T P10
......... D L oh
P v
™ Clipping edge

Fig. 5.16 Dot products for three points inside, outside and on the boundary of the clipping region
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As shown in the Fig. 5.16, if the point f lies in the boundary plane or edge for which nis
the inner normal, then that point ton the line P(t) which satisfics n AP - £ ] =0 condition is
the intersection of the line with the boundary edge.

Ex.5.3:  Consider the line from P (=2,1)to P;(8,4) clipped to the rectangular region R us shown
in the Fig. 5.17. The line PP, intersects the window. Calculate the intersection points.

y
64
f
4 |_Py8.4)
| /
P1(—2.1).//
t f t t t X
-2 2 4 6 8
Fig. 5.17
Sol.: The parametric representation of the line PP, is

P(t) = Py +(Py,-P)t=[-2 1]+[10 3] 1
=(106-2)i+ @3t +1)j; 02t
where i and j are the unit vectors in the x and y directions, respectively. The four inner
normals are given as

Left : n =i
Right np =-—1i
Bottom : ng = j
Top : np = —j

Choosing f (2, 0) for the left edge gives
P(t)~f = (10t-4)i+(3t+1)j and
n - [Pt)-f] = 10t-4=0
. t =2/5
Substituting value of t in parametric equation we get,

P(2/5) = [-2 1]+ [10 3] (2/5)
=[-21]+[4 6/5]
= [2 22]
Choosing £(7, 5) for the right edge gives
P()-f = (10t-9)i + (3t~ 4)jand
ng [P -f)] = - (10t-9)=0
t =9/10

Substituting value of t in parametric equation we get,
P(9/10) = [-2 1]+[10 3](9/10)
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-2 1]1+[9 27/10]
{7 37/10] =[7 3.7]
Using f(2, 0) for the bottom edge gives

ng [P-f] =3t+1=0

: t = -1/3

This value of t is outside the range of 0 < t <1 and hence itis rejected.

il

1t

Using £(7, 5) for the top edge gives
ne-[P()-f] = -GBt-4)=0
c t = 4/3
This value of t is outside the range of 0 < t < 1 and hence it is rejected.

Thus, we get two intersection points (2,2.2) and (7, 3.7) with left edge and right edge,
respectively.

To get the formal statement of the Cyrus-Beck algorithm we substitute value of P(t) in
equation 5.8.

n-[Pt)y-f] = n-[P,+(P,-P)t-f}=0 ... (5.10)

This relation should be applied for cach boundary plane or edge of the window to get

the intersection points. Thus in general form equation 5.10 can be written as,
n-P,+(@P,-P)t-£1=0 .. (5.11)

where i: edge number

Solving equation 5.11 we get,
n [P -f1+n-[P,-P]t=0 .. (5.12)
Here, the vector P, - P, defines the direction of the line. The direction of line is important
to correctly identify the visibility of the line. The vector P, - f; is proportional to the distance
from the end point of the line to the boundary point.

Let us define,

D = P,-P, as the directorix or direction of aline and
W, = P,-f, asa weighting factor. '

Substituting newly defined variable D and W; in equation 5.12 we get,

n-W,+(n-D)t=0 ... (5.13)
' ¢ = oW (5.14)

Dn. ... (6.
where D # 0andi=1,223, ...

The equation 5.14 is used to obtain the value of t for the intersection of the line with each v
edge of the clipping window. We must select the proper value for t using following tips :

1. If t is outside the range 0 < t< 1, then it can be ignored.

2 We know that, the line can intersect the convex window in at most two points, i.e. at
two values of t. With equation 5.14, there can be several values of t in the range of
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0<t<1. We have to choose the largest lower limit and the smallest upper limit
(see Ex. 5.3).

If D, - n; > 0 then equation 5.14 gives the lower limit value for t and if D; - n; <0 then
equation 5.14 gives the upper limit value for t.

Cyrus-Beck Line Clipping Algorithm
1. Read two end points of the line, say P, and Py

2. Read vertex coordinates of the clipping window
3. Calculate D=P,-P,
4. Assign boundary point (f) with particular edge
5. Find inner normal vector for corresponding cdge
6. CalculateD-nand W=P -f
7. IfD-n>0
W-n
t= -
D-n
else
W-n
ty=-
v D-n
end if

8. Repeat steps 4 through 7 for each edge of the clipping window
9. Find maximum lower limit and minimum upper limit

10. If maximum lower limit and minimum upper limit do not satisfy condition 0 <t <1
then ignore the line.

11. Calculate the intersection points by substituting values of maximum lower limit
and minimum upper limit in the parametric equation of the line P;P,.

12. Draw the line segment P(t;) to P(ty).
13. Stop.

Ex.5.4: Fig. 5.18 shows the Hexagonal clipping window. The line P, (-2, 1) to P, (6, 3) is to be
clipped to this window. Find the intersection points.
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Sol.: We know that,
| D = P,-P,=[63]-[-21]=(8 2]
For boundary point {(3, 0)
W="DP-f=[-2 1]-{30]=[-5 1]
For the edge V, V, the inner normal is
n=1[11]
Hence Dn=1(82]-[11]=10>0

. The lower limit can be given as
W-n [-51][1 1]

t, =

Similar calculation with each edge gives the complete results of the Cyrus-Beck
algorithm. These results are tabulated in table 5.2.

Edge n f w W-n D-n t ty

ViV, [[1 11| 30 |[-51] -4 10 4/10

v,vy [ 11 o) | (L4 |[-3-3]] -3 8 3/8

ViV, [1 -1] (1, 4) [-3-3] 0 6 0

V4 Vs [-1-1] (5, 4) [-7-3] 10 -10 10/10
Vs V¢ [-1 0] 5.4 |1-7-31 7 -8 7/8
Ve Vi [-1 1] 3.0 [-5 ]]' 6 -6 6/6

Table 5.2

Referring table 5.2 we have,
The maximum lower limit (t,) =4/10 and
The minimum upper limit (t;) =7/8

Substituting these values of t in parametric equation

we get,
P(4/10) = [-2 1]+ [8 2] (4/10)
= [-2 1]+[32 08]
= [1.2 1.8]
P(7/8) = [-2 1]+[8 2] (7/8)

[-2 1]+[7 175]
[5 2.75]
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Thus, the two intersection points to line P,P, are [1.2 1.8] and [5 2.75] with edges V.V,
and V;V, respectively.

5.3.2.4 Liang-Barsky Line Clipping Algorithm

[n the last section we have seen Cyrus-Beck line clipping algorithm using parametric
equations. It is more efficient than Cohen-Sutherland algorithm. Liang and Barsky have
developed even more efficient algorithm than Cyrus-Beck algorithm using parametric
equations. These parametric equations are given as

X = X; + tAx
y =y, +tay, 0<t<1
where AX = X;-xjand Ay =y, -y,

The point clipping conditions (Refer section 5.3.1) for Liang-Barsky approach in the
parametric form can be given as

]

X and

wnmin

Xy + tAX £ x

wmax

Y1+ tAY S Yomax
Liang-Barsky express these four inequalities with two parameters p and q as follows :
tp; < q; i=1,23,4
where parameters p and q are defined as
P1 = ~AX, ;= X; = Xymin
P2 = AX, G =Xyma— X%
P3 = -4y, Q3= Y1~ Yumin
Ps = Ayl 94 = Ywmax — Y1
Following observations can be easily made from above definitions of parameters p and

IAN A

YWmin

! Ifp, =0 : Line is parallel to left clipping boundary.

Ifp,=0 : Line is parallel to right clipping boundary.

Ifp;=0 :  Line is parallel to bottom clipping boundary.

Ifp,=0 : Line is parallel to top clipping boundary.

Ifp, =0, and for that value of i,
If <0 : Line is completely outside the boundary and can be eliminated.
If g;20 : Line is inside the clipping boundary.

Ifp; <0 : Line proceeds from outside to inside of the clipping boundary.

Ifp,>0 : Line proceeds from inside to outside of the clipping boundary.

Therefore, for nonzero value of p,, the line crosses the clipping boundary and we have to
find parameter t. The parameter t for any clipping boundary i can be given as

g = di i=1,2,3,4
Pi

Liang-Barsky algorithm calculates two values of parameter t : t, and t, that define that
part of the line that lies within the clip rectangle. The value of t; is determined by checking
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the rectangle edges for which the line proceeds from the outside to the inside (p < 0). The
value of t; is taken as a largest value amongst various values of intersections with all edges.
On the other hand, the value of t, is determined by checking the rectangle edges for which
the line proceeds from the inside to the outside (p > 0). The minimum of the calculated value
is taken as a value for t,.

Otherwise the values of t; and t, are substituted in the parametric equations to get the end

E Now, if t; > t,, the line is completely outside the clipping window and it can be rejected.
| points of the clipped line.

Algorithm
i 1. Read two endpoints of the line say p, (x,, y;) and p, (xy, y3).

| ’ 2. Read two corners (left-top and right-bottom) of the window, say (X,,uin» Ywmax

?1: ) Xwmax? ywmin)

3. Calculate the values of parameters p; and q; for i = 1, 2, 3, 4 such that

‘ P1=-8X  qp =Xy~ Xyniq
L P2=8X Qg =Xymax— X
: 41 =-48Y 43 = Y1~ Ywmin

qy = Ay 94 = Ywmax ~ Y1
4. ifp; =0, then

{  The line is parallel to i'" boundary.
Now, if q; < 0 then

{ line is completely outside the boundary, hence

discard the line segment and goto stop.

)

else

{ Check whether the line is horizontal or vertical and accordingly
check the line endpoint with corresponding boundaries. If line

1

i‘l endpoint/s lie within the bounded area then use them to draw

}i line otherwise use boundary coordinates to draw line. Go to stop.
H
|

5. Initialise values for t, and t, as

t;=0andt, =1

Calculate values for q/p;fori=1,2,3,4

Select values of q;/p; where p; < 0 and assign maximum out of them as t,.
Select values of q;/p; where p; > 0 and assign minimum out of them as t,.
; If(t, < ty)

]1 { Calculate the endpoints of the clipped line as follows :

© ® 2o

XX; =Xy +t; AX



Computer Graphics 175 2-D Viewing and Clipping

XXy = X + Ly AX
yyi=y1 +t Ay
Yy, =y +tp Ay
Draw line (xx, yy1, XXy, Y¥9)
)
10. Stop.

'C' code for Liang-Barsky Line Clipping Algorithm
(Softcopy of this program is available at vtubooks.com)
#include<stdio.h>
#include<graphics.h>
#include<math.h>
main ()
{
int i,g9d,gm;
int xl,yl,x2,y2,xmin,xmax,ymin,ymax,xxl,xx2,yy1,yy2;
float tl1,t2,pi{4],ql4],cemp;
detectgraph (&gd, &gm) ;
initgraph (&gd, &gm, "");

x1=10;
y1l=10;
x2=60;
y2=30;
xmin = 15;
xmax = 25;
ymin = 15;
ymax = 25;

rectangle (xmin, ymin, Xxmax, ymax) ;
pl0]) = -(x2-x1);

pil) = (x2-x1);

pl2] = -(y2-yl);

pl3] = (y2-yl);

gl0] = (x1l-xmin);

qll)] = (xmax-x1);

ql2) = (yl-ymin);

ql3] = (ymax-yl);
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for (i=0;i<4;1i++)
{
if(p[i]==0)
{
printf("line is parallel to one of the clipping boundary");
if(g{i] >= 0)
{
if(i < 2)
{ if (yl < ymin)

yl = ymin;

if (y2 > ymax)
{
y2 = ymax;
}
line(x1,yl,x2,vy2);
}
if(i > 1)
{

if (x1 < xmin)

if (x2 > xmax)
{
X2 = xXmax;

}
line(xl,yl,x2,y2);

}
getch () ;
return(0);
}

}

tl 0;

t2 = 1;

for(i=0;1i<4;i++)
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{
temp = q{i)/p[i];
if(pli] < 0)
{
if(tl <= temp)

tl = temp;

if(£2 > temp)
{

t2 = temp;

)

}
1f(tl<t2)
{
xxl = x1 + t1 * p[1];
Xx2 = x1 + t2 * p[1l]);
yyl = yl + £1 * p[3];
yy2 = yl + t2 * p[3];
line (xx1, yyl, xx2,yy2):
}
getch () ;
closegraph();
}

Advantages

1. It is more efficient than Cohen-Sutherland algorithm, since intersection calculations

are reduced.

2. It requires only one division to update parameters t; and t,.

3. Window intersections of the line are computed only once.

Ex.5.5  Find the clipping coordinates for a line pip, where p,
window with (X, Yo = (15, 15) and (x

Sol.: Here,

YI =10 YWmin =15

= (10, 10) and p, (60, 30), against
wmax: Y ummx) = (25, 25).
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x, = 60 Xomax = 2D

y, = 30 Yowmar = 29

pi = -0 q =-5 pi/q =01

p, = 50 q =15 P2/q = 0.3

py=-20 Q3 = -5 Pa/qs = 0.25

ps =20 qs = 15 Pa/qy = 075

t, = max (0.25, 0.1) = 0.25 since for these values p < 0
t, = min (0.3, 0.75) = 0.3 since for these values p > (

Here, t; < t, and the endpoints of clipped line are :

XX; = Xp+ 4 Ax
= 10+ 0.25x50
= 225

Yy: = yi+t 4y
= 10+0.25x20
=15

XX, = X, + t; AX
= 10+ 0.3x50
= 25

YY2 = Y1+ bhAy
= 10+0.3x20
= 16

5.4 Polygon Clipping

In the previous sections we have seen line clipping algorithms. A polygon is nothing but %
the collection of lines. Therefore, we might think that line clipping algorithm can be used '
directly for polygon clipping. However, when a closed polygon is clipped as a collection of
lines with line clipping algorithm, the original closed polygon becomes one or more open
polygon or discrete lines as shown in the Fig. 5.19. Thus, we need to modify the line clipping
algorithm to clip polygons.

(a) Before clipping- (b) After clipping

Fig. 5.19 Polygon clipping done by line clipping algorithm
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We consider a polygon as a closed solid area. Hence after clipping it should remain
closed. To achieve this we require an algorithm that will generate additional line segment
which make the polygon as a closed area. For example, in Fig.5.20 the lines a~b,c—d,d -e,
f-g and h -iare added to polygon description to make it closed.

s wrrcr e c s e .- —— -

f

(a) (b)

Fig. 5.20 Modifying the line clipping algorithm for polygon

Adding lines ¢ - d and d - e is particularly difficult. Considerable difficulty also occurs
when clipping a polygon results in several disjoint smaller polygons as shown in the
Fig. 5.21. For example, the linesa-b,c-d,d -e and g - f are frequently included in the
clipped polygon description which is not desired.

Fig. 5.21 Disjoint polygons in polygon clipping

5.5 Sutherland - Hodgeman Polygon Clipping

A polygon can be clipped by processing its boundary as a whole against each window
edge. This is achieved by processing all polygon vertices against each clip rectangle
boundary in turn. Beginning with the original set of polygon vertices, we could first clip the
polygon against the left rectangle boundary to produce a new sequence of vertices. The new
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set of vertices could then be successively passed to a right boundary clipper, a top boundary
clipper and a bottom boundary clipper, as shown in Fig. 5.22. At each step a new set of
polygon vertices is generated and passed to the next window boundary clipper. This is the
fundamental idea used in the Sutherland - Hodgeman algorithm.

Original polygon Left clipped Right clipped

Top clipped Bottom clipped

Fig. 5.22 Clipping a polygon against successive window boundaries

The output of the algorithm is a list of polygon vertices all of which are on the visible side
of a clipping plane. Such each edge of the polygon is individually compared with the
clipping plane. This is achieved by processing two vertices of each edge of the polygon
around the clipping boundary or plane. This results in four possible relationships between
the edge and the clipping boundary or plane. (See Fig. 5.23).

1. If the first vertex of the edge is outside the window boundary and the second vertex of
the edge is inside then the intersection point of the polygon edge with the window
boundary and the second vertex are added to the output vertex list (See Fig. 5.23 a).

2. If both vertices of the edge are inside the window boundary, only the second vertex is
added to the output vertex list. (See Fig. 5.23 b).

3. If the first vertex of the edge is inside the window boundary and the second vertex of
the edge is outside, only the edge intersection with the window boundary is added to
the output vertex list. (See Fig. 5.23 c).

4. If both vertices of the edge are outside the window boundary, nothing is added to the
output list. (See Fig. 5.23 d).

Once all vertices are processed for one clip window boundary, the output list of vertices
is clipped against the next window boundary.
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Fig. 5.23 Processing of edges of the polygon against the left window boundary

Going through above four cases we can realize that there are two key processes in this

algorithm.

1. Determining the visibility of a point or vertex (Inside - Outside test) and

2. Determining the intersection of the polygon edge and the clipping plane.

One way of determining the visibility of a point or vertex is described here. Consider
that two points A and B define the window boundary and point under consideration is V,
then these three points define a plane. Two vectors which lie in that plane are ABand AV. If
this plane is considered in the xy plane, then the vector cross product AV x AB has only a z

component given by (xy = Xa) (Ys = ¥a) = (yy - ya) (xg — x,). The sign of the z component
decides the position of point V with respect to window boundary.
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Ifzis: Positive - Point is on the right side of the window boundary
Zero - Point is on the window boundary
Negative - Point is on the left side of the window boundary

Ex.5.6: Consider the clipping boundary as shown in the Fig. 5.24 and determine the positions of
points V,and V,.

Fig. 5.24

Sol.: Using the cross product for V, we get,

(xv = Xa) (Y8 = Ya) = (yv = ¥a) (X = Xp)
1-2)(6-1)-6-D2-2)
-1D@-0

= -4

The result of the cross product for V, is negative hence V, is on the left side of the
window boundary.

Using the cross product for V, we get, (4-2) (5-1)-(3 - 1) (2-2)
=(2)4)-0
=8

The result of the cross product for V, is positive hence V, is on the right side of the
window boundary.

The second key process in Sutherland - Hodgeman polygon clipping algorithm is to
determine the intersection of the polygon edge and the clipping plane. Any of the line
intersection (clipping) techniques discussed in the previous sections such as Cyrus-Beck or
mid point subdivision can be used for this purpose. '

Sutherland-Hodgeman Polygon Clipping Algorithm

1. Read coordinates of all vertices of the polygon.
2. Read coordinates of the clipping window

3. Consider the left edge of the window

4.

Compare the vertices of each edge of the polygon, individually with the clipping
plane
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5. Save the resulting intersections and vertices in the new list of vertices according to

four possible relationships between the edge and the clipping boundary discussed
earlier.

6. Repeat the steps 4 and 5 for remaining edges of the clipping window. Each time the
resultant list of vertices is successively passed to process the next edge of the
clipping window.

7. Stop.

Ex.5.7: Fora polygon and clipping window shown in Fig. 5.25 give the list of vertices after each
boundary clipping.

Vy
Clipping window

.........

Vq
Fig. 5.25

Sol.: Original polygon vertices are V,, Vy, V,, V,, V. After clipping each boundary
the new vertices are given in Fig. 5.26

, Fig. 5.26

After left clipping V,, Vi, V3, V3, V,, Vs
After right clipping V,, Vi, V3, V3, V,, Vs
After top clipping : V,, Vi, Vi, Vs, V3, V5, Vs

After bottom clipping : V), Vi, Vs, Vi, Vy, Vs, Vg
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'C' code for Sutherland-Hodgeman Polygon Clipping Algorithm
(Softcopy of this program is available at vtubooks.com)

Bincias o adion

i ivdecgraphics. he

frrolademeti.

Lypedel struct

{

Sloat oz o
Float y;

PR

int ong

main ()

{

inv L, 3,49d,gm;
Frod,pl,p?,pi{20),p11,pi2,ppl20};
detecograph (&§gd, &gm) ;

ini C‘LjLé_:ph (&gdl sgm, ey .
/* Read coordinates of clipping window

printf ("Enter cocordinates (left,top) of pointl : ");
scanf ("$f, %f", &pl .=, &pl.y);
printf ("Enter coordinates (right,bottom) of point2 : ");

scanf ("%f,%f", &p2.%,6&p2.y);
/* Erter the number of vertex

printf ("Enter the number of vertex : ");

scanf ("%d", &n) ;

/* Read vertex coordinates of clipping window
_________________________________________ */
for(i=0;i<n;i++)

{

printf ("Enter coordinates of vertex%d : ",i+1);

scanf ("%f, %", &p[i] . .x,&pli].y);
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plij.y = pl{0].y;

cleardevice () ;
drawpolygon(p, n);
rectangle(pl.x,pl.y,p2.%,p2.y);
getch () ;

left(pl,p.,pp):

right (p2, p,pp):;

top(pl,p,pp);

bottom(p2, p, pp) -

cleardevice();
rectangle(pl.x,pl.y,p2.x,p2.vy);
drawpolygon(p, n);

getch();

closegraph();

}

left (PT pl,PT p(20],PT pp(20])
{
int 1i,3=0;
for (1i=0;i<n;i++)
{
if(plil.x < pl.x && plitl].x >= pl.x)
{
if(plitl].x-p[i).x!=0)
{
pP(3).y = (Pli+1].y-p(i].y)/ (P[i+1].x-p[i]
}

else

{

ppljl.y = plil.y;
}
ppljl.x = pl.x;
JH++s
pplJl.x=p[i+l].x;
pplil.y=plitl].y;
g4+

}

LX) A

(pl
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if(pli).x > pl.x && pli+l].x >= pl.x)

{

pplil.y = plitl].y;
pplil.x = pli+l).x;
J++s

)

if(p(il.x > pl.x && plitl].x <= pl.x)

{
if(p(i+l].%-pli].x!=0)

{

pp(il.y =

}

else

{

ppljl).y = plil.y:

1

opljl.x = pl.x;
J++;

}

for (i=0;1i<j;i++)

{

plil.x = ppli].x;
pli).y = pplil.y;
}

plil.x = ppl0].x;
pli).y = ppl0].y;
n=j;

right (PT p2,PT p[(20],PT pp(20])
t
int 1i,3=0;
for(i=0;i<n;i++)
{
if(pli].x > p2.x && pli+l}.x <=
{
if(pli+l].x-pli].x!=0)

(pli+1].y-plil.y)/(pli+l).x-p[i].x)* (pl.x-pli).x)+pli).y;

o

1
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{

pplil.y = (pli+l].y-pli].y)/(pli+1l].x-p{i].x)*

}

else
{
ppljl.y = pli)

} =

pplj1.x"= p2.x;
jF+;
ppl(j].x=pli+l) .x;
pplil.y=pli+l]).y;
JA+;

1

if(pfi].x < p2.x
{

pplil.y = pli+1].
ppljl.x = pli+l].
J++;

}

if(p{i].x < p2.x
{
if(p[i+l).x-p
{

PP(3].y = (Pli+1].y-plil.y)/(P[i+1].x-p[i].x)*

}

else

{

ppl]j).y

}
ppljl.x = p2.x;
Jt++;

}

pli]

for (i=0;1i<j;i++)
{

pli].x = ppli].x;
pli]l.y = pplil.y;
}

Ly

&& pli+l].x <= p2.x)

y:

X7

&& pli+l].x >= p2.x)

[1].x!=0)

.Y

(p2.x-p[i).x)+p[i].y;

(P2.x-pli].x)+pli].y:
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clse

!
t

ppli).x = plil.x;
j

prlil.y = pl.y;

I+

|
!

for (i=0;1<9;1++)
{

pli].x

I

x

ppli].
plij.y = pplil.y;
plil.x = ppl0].x;
plil.y = ppl0].y;
n=7j;
}
bottom (PT pZ,PT p[201,PT pp{20])
{
int i1,3=0;
for(i=C;i<n;i++)

if(plil.y > p2.y && pli+l].y <= pZ.y)

{
if(plit+tl].y-pli].y!=0)
{
pp{jl.x = (pli+l].x-D(i].x)/ (p[i+1l].y-p[i]).y)* (P2.y-plil.y)+pli].x;.
\
else
{
pplil.x = pli].x;
}
ppljl.y = p2.y;
JEk;

pplj).x=p[i+l].x;
pp(j].y=plit+l] .y:

JE+S
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!

i
%i 1f(pii).y < p2.y && pi141ll.y <= pZ.v)
K |
g pplil.y = pli+l).y;
| pplil.x = plitl].x;
i b

}

if(plil.y < p2.y && pli+l).y >= pZ.y)

i
1

if(plitll.y-p(i].y!=0)

pplil.x = (pli+t1].x-pli).x)/(p{i+t1].y-pli]

}
for (i=0;i<j;i++)
{
plil.x = ppli].x;
iy plil.y = pplil.vy;
& }
plil.x = pp(0].x;
pli].y = ppl0].y;
n=j;
}
drawpolygon (PT x[20],1int n)
{
int i;

for(i=0;i<n-1;1i++)
{
line(x[i]).x,x[1].y,x{1i+1).x,x{i+1].y)’

1

line(x[i].x,x[i).y,x[0).x,x[0].y);

LYK

(p2.y-pli].y)+pii}.x;
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The Sutherland-Hodgeman polygon clipping algorithm clips convex polygons

correctly, but in case of concave polygons, clipped polygon may be displayed with
extraneous lines, as shown in Fig. 5.27.

(b)

Fig. 5.27 Clipping the can cave polygon in (a) with the Sutherland-Hodgeman algorithm produces
the two connected areas in (b)

The problem of extrancous lines for concave polygons in Sutherland-Hodgeman
polygon clipping algorithm can be solved by separating concave polygon into two or more
convex polygons and processing each convex polygon separately.

5.6 Weiler-Atherton Algorithm

The clipping algorithms previously discussed require a convex polygon. In context of
many applications, e.g., hidden surface removal, the ability to clip to concave polygon is
required. A powerful but somewhat more complex clipping algorithm developed by Weiler
and Atherton meets this requirement. This algorithm defines the polygon to be clipped as a
subject polygon and the clipping region is the clip polygon.

The algorithm describes both the subject and the clip
Co e Cy polygon by a circular list of vertices. The boundaries of
the subject polygon and the clip polygon may or may not
intersect. If they intersect, then the intersections occur in
pairs. One of the intersections occurs when a subject
polygon edge enters the inside of the clip polygon and
one when it leaves. As shown in the Fig. 5.28, there are
four intersection vertices I, I, , I3 and I,. In these

intersections I, and 1, are entering intersections, and I,
c, TR c, | and I; are leaving intersections. The clip polygon
vertices are marked as C;, C,, C;and C,.

Fig. 5.28

In this algorithm two separate vertices lists are made one for clip polygon and one for
subject polygon including intersection points. The Table 5.3 shows these two lists for
polygons shown in Fig. 5.28.
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For subject polygon For clip polygon
2 C,
Vv, Ig

Start Iy 3 Finish
V, I
A /l Iy Finish
, 7 c,
Vg Cy

Start I3 C,
Ve
lq
Vy

Table 5.3 List of polygon vertices

The algorithm starts at an entering intersection (I;) and follows the subject polygon
vertex list in the downward direction (ie. I}, V5, V,, I,). At the occurrence of leaving
intersection the algorithm follows the clip polygon vertex list from the leaving intersection
vertex in the downward direction (i.e. I, I;). At the occurrence of the entering intersection
the algorithm follows the subject polygon vertex list from the entering intersection vertex.
This process is repeated until we get the starting vertex. This process we have to repeat for
all remaining entering intersections which are not included in the previous traversing of
vertex list. In our example, entering vertex I; was not included in the first traversing of
vertex list,. Therefore, we have to go for another vertex traversal from vertex I,.

The above two vertex traversals gives two clipped inside polygons. There are :

IV, V, L, Ijand L, V,, 1,1,

5.7 Generalized Clipping

We have seen that in Sutherland - Hodgeman polygon clipping algorithm we need
separate clipping routines, one for each boundary of the clipping window. But these
routines are almost identical. They differ only in their test for determining whether a point is
inside or outside the boundary. It is possible to generalize these routines so that they will be
exactly identical and information about the boundary is passed to the routines through their
parameters. Using recursive technique the generalized routine can be 'called’ for each
boundary of the clipping window with a different boundary specified by its parameters.
This form of algorithm allows us to have any number of boundaries to the clipping window,
thus the generalized algorithm with recursive technique can be used to clip a polygon along
an arbitrary convex clipping window.
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5.8 Interior and Exterior Clipping

So far we have discussed only algorithms for clipping point, line and polygon to the
interior of a clipping region by eliminating every thing outside the clipping region.

However, it is also possible to clip a point, line or polygon to the exterior of a clipping region

Window 2

Window 1

3

Window 3

&

Fig. 5.29 Clipping in multiwindow environment

Solved Examples

!

L.e., the point, portion of line and polygon
which lie outside the clipping region. This is
referred to as exterior clipping.

Exterior clipping is important in a
multiwindow display environment, as
shown in Fig. 5.29. The Fig. 5.29 shows the
overlapping windows with window 1 and
window 3 having priority over window 2.
The objects within the window are clipped
to the interior of that window. When other
'higher-priority windows such as window 1
and/or window 3 overlap these objects, the
objects are also clipped to the exterior of the
overlapping windows.

Ex.5.8:  Use the Cohen-Sutherland outcode algorithm to clip two lines P, (40, 15) ~ P, (75, 45)
and Py (70, 20) - P, (100, 10) against a window A (50, 10), B (80, 10), C (80, 40),
D(50,40).

Sol.: Line 1: P; (40, 15) P, (75, 45) W,, = 50 W, =40

Wo=80 W, =10
Point Endcode ANDing
P; 0001 0000 Partially visible
P, 0000
6 45-15 6
= -X)+y=-(50-40)+15 m= =
o= mbam ey =g (0-40 75-40 7
= 23.57
X, = 1 yr-y+ x:>z6(40— 15) + 40 = 69.16
m
=m - x) +
P,(75, 45) Y2 6 Cr=x) +y
(50, 40) 1/ (80, 40) = (80-40) + 15
=49.28
1
Y1 X2=*(yB'—y)+X
P,(40, 15 ;n
(50, 10) (80, 10) =g(10—15) +40
Fig. 5.30 =34.16
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Line 2 : P, (70, 20) P, (100, 10)

Point End code ANDing Position
P 0000 0000 Partially visible
P, 0010

. 10-20 -10 -1

100-70 30 3

Slope m

'

-1
yr = m(x, -x)+y= 5 (50 - 70) + 20

= 26.66
Ly - y)# x==3(40-20) + 70
m
- 10

1
yo = m(xR—x)+y=?(80—70)+20

= 16.66
l()’lry)+x=—3(10—20)+70
m

~
N
I

100

(50.40) (80.40)

o}V, (80.16.66)

(50,10) (80,10)

Fig. 5.31

Ex.5.9: Find the normalization transformation windotw to vicwport, with window, lower left
corner at (1, 1) and upper right corner at (3, 5) onto a viewport, for entire normalized
device screen.

Sol.: X min = J Y wmin =
x\\' max = 3 y\\' max = 5
Entire normalized screen
Xy min = 0 .V\f min = 0
X\" max = l Y\' max = 1
S\, — Xy max ~ Xv min
Xw max ~ Xw min
1-0 1
T 3-1 2
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_1-0
T 5-1
1
T4
Transformation matrix is given as
> S.
T.S. T = 0
| Xvmin ~ Xw min Ox
(0.5 0 0
=] 0 0.25 0
-0.5 -0.25 1

S = Yvmax 7 Y vmin

Review Questions

A 0
Sy 0
Yvmin =Y w minSy 1

O 0NN S U e Ny

13.
14.

15.

. What is windowing and clipping ?
. Write a short note on viewing transformation.

. Distinguish between viewport and window.

. What is point clipping and line clipping ?

Explain Liang-Barsky line clipping algorithm.
What is polygon clipping ?

. What do you mean by normalization transformation ? Why it is needed ?

_Derive the transformation matrix for 2-D viewing transformation.

. Explain the Sutherland and Cohen subdivision algorithm for line clipping.
. Explain the mid-point subdivision method of clipping a line segment.

. Explain the Cyrus-Beck algorithm for generalized line clipping.

10.
11
12.

Explain Sutherland - Hodgeman algorithm for polygon clipping ?

What are the limitations of Sutherland-Hodgeman polygon clipping algorithm ?

Explain Weiler-Atherton polygon clipping algorithm and state its advantage over

Sutherland-Hodgeman polygon clipping algorithm.

Write a short note on generalized clipping.

University Questions

1. Explain the Cohen-Sutherland techniques for line clipping.

(Dec-96)

2. Develop a PASCAL program/C program to clip a polygon against a rectangular window

inclined at an angle 6 to the x-axis.

(Dec-96)

3. What do you understand by the terms "window" and "viewpoint™. Derive the mapping for

any given point (x,,, y,,) from the window onto the viewpoint.

(May-97)



Computer Graphics 196 2-D Viewing and Clipping

4. Discuss the algorithm and develop a program for polygon clipping. [llustrate the working of

your program for any sample polygon of your choice. (May-97)
5. Define the terms world-co-ordinates, device co-ordinates, normalised co-ordinates and

homogeneous co-ordinates. (May-97, May-2000)
6. Figure below depicts a picture in the "window". For the "view port” shown alongside evaluate

and draw the mapped picture. (Dec-97)

Window View Port
(200,100) (0,0) (639,0)
(5,60)
(- 50,50) (60,50)
(-50,-25) (60,-25)
(0,479) (639,479)
(100,-50)
Fig. 5.32

(Note : The picture is not to scale)

7. Write an line clipping algorithm which uses parametric form of equations. Test it for a line P,
P, where P, = (10, 10) and P, = (60, 30), against window with (X, i Yomin) = (15, 15) and

(Xwmaxs Ywmax) = (25, 25). (May-98)
8. Figure below shows a window (A, B, C, D) and a viewport (L, M, N, O). Show how the
window and object in it, is mapped to viewport. (May-98)
2 _ 440 N
4 B 3
3 2
2 1
;i S i
123456 1234568
Window Viewport
Fig. 5.33

9. Develop an function/procedure which performs line clipping using Cohen-Sutherland
method. How the line between (2, 2) and (12, 9) is clipped against window with

(Xwmin Ywmin) = (4 4) and (X000 Viwmax) = (9, 8). (Dec-98, May-2002)
10. Develop formulae for window to view port mapping in 2D. Write a routine to map a POINT
XYy - - (May-99)

11. Indicate a mechanism to map an elliptical window to circular view port. Hint : map centre of
ellipse to centre of circle. (May-99)
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12.
13.
14.

15.

16.
17.

Explain Sutherland - Hodgman clipping algorithm with example. (May-99)
What is the use of Normalised Device Co-ordinates. (May-99)
Explain why the Sutherland - Hodgman polygon - clipping algorithm works for only convex
clipping regions. (Dec-99)
Explain Cohen-Sutherland line clipping algorithm. Develop a program to clip a line between
(x), ¥1) (X2, y2) against a window (X ¥inin) Kimaxr Ymax) (May-2000)
Give Liang Barsky line clipping algorithm. (May-2001, May-2003)
Using Liang Barsky line clipping algorithm find the clipping co-ordinates of line segment
~with end co-ordinates A(- 10, 50) and B(30, 80) against window
Kymin = =30, Yiwmin = 10) Kwmax = 20, Yirmax = 60). (May-2001)
- Suggest modification to Sutherland Hodgman polygon clipping algorithm to clip concave
polygon. (May-2001)
What do ybu understand by the terms WCS, DCS, NDS, WINDOW and VIEWPORT. Derive

19.

the mapping for any given point P(xw, yw) from window to viewpoint using matrix method.
Window is defined in right handed world coordinate system and view port is defined in left
handed device coordinate system. (May-2001)

Qaa



]
3-D Concepts

| o~

6.1 Introduction *

Manipulation viewing and construction of three dimensional graphic image requires
 the use of three dimensional geometric and coordinate transformations. Three dimensional
geometric transformations are extended from two-dimensional methods by including
considerations for the z coordinate. Like two dimensional transformations, these
transformations are formed by composing the basic transformations of translation, scaling,
and rotation. Each of these transformations can be represented as a matrix transformation
with homogeneous coordinates. Therefore, any sequence of transformations can be
represented as a single matrix, formed by combining the matrices for the individual
transformations in the sequence.

€.2 Translation

Three dimensional transformation matrix for translation with homogeneous
coordinates is as given below. It specifies three coordinates with their own translation factor.

(1 0 0 0]
01 0 0
T =
60 0 1 0
byt 1]
P=PT
1 0 0 0]
0 1 0 0
LXKy Z 1) =[xy z 1]
0 0 1 0
bty t 1)
= [x+t, y+t, z+t, 1] ... (6.1)

Like two dimensional transformations, an object is translated in three dimensions by
transforming each vertex of the object.

(198)
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y axis

P(x, y, 2)
[ ]

Z axis ' X axis z X
(a) Translating point {b) Translating object

Fig. 6.1 3 D translation

6.3 Scaling

Three dimensional transformation matrix for scaling with homogeneous coordinates is
as given below.

Fig. 6.2 3 D Scaling

It specifies three coordinates with their own scaling factor.

S, 0 0 0]
0 Sy 0 0
S =
0 0 S, 0
|10 0 0 1]

~
I

7
»
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S, 0 0 0]
0Ss, 0 0
SX Yy 2 1) =[xy z 1]
0 0 S, 0
0 0 0 1
= [x-Sx y~S), z-S, 1] - (6.2)

A scaling of an object with respect to a selected fixed position can be represented with
the following transformation sequence.

1. Translate the fixed point to the origin.

1

2. Scale the object

3. Translate the fixed point back to its original position.
6.4 Rotation

Unlike two dimensional rotation, where all transformations are carried out in the xy
plane, a three-dimensional rotation can be specified around any line in space. Therefore, for
three dimensional rotation we have to specify an axis of rotation about which the object is to
be rotated alongwith the angle of rotation. The easiest rotation axes to handle are those that
are parallel to the coordinate axes. It is possible to combine the coordinate axis rotations to
specify any general rotation.

Coordinate Axes Rotations

Three dimensional transformation matrix for each coordinate axes rotations with ‘
homogeneous coordinate are as given below »

y Y

5 *0 0
P/ \ /)1
o x z

(c)

cos sinh 0 O

R. = —sin cos0 0 O
L=

0 0 1 0

0 0 0 1

4

(a)

Fig. 6.3 Rotation about z axis

The positive value of angle 8 indicates counterclockwise rotation. For clockwise rotation
value of angle 6 is negative.
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H y
1 0 0 O
R = 0 cosO sin0 O
x = .
0 —sin0 cosl O 3
0 0 0 1
z X

(a) (b)

Fig. 6.4 Rotation about x axis

y y
J
cosy 0 -sinl O >
Ry= 0 1 0 0
sin0 0 cosO O
0

o

(a) (b) {c)

Fig. 6.5 Rotation about y axis
6.5 Rotation about Arbitrary Axis

A rotation matrix for any axis that does not coincide with a coordinate axis can be set up

as a composite transformation involving combinations of translations and the
coordinate-axes rotations.

In a special case where an object is to be rotated about an axis that is parallel to one of the

coordinate axes we can obtain the resultant coordinates with the following transformation
sequence.

1. Translate the object so that the rotation axis coincides with the parallel coordinate
axis.

2. Perform the specified rotation about that axis.

3. Translate the object so that the rotation axis is moved back to its original position.

When an object is to be rotated about an axis that is not parallel to one of the coordinate

axes, we have to perform some additional transformations. The sequence of these
transformations is given below.
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1. Translate the object so that rotation axis specified by unit vector u passes through the
coordinate origin. (see Fig. 6.6 (a) and (b) )

1N

. Rotate the object so that the axis of rotation coincides with one of the coordinate axes,
Usually the 7z axis is preferred. To coincide the axis of rotation to z axis we have to
first perform rotation of unit vector u about x axis to bring it into xz plane and then
pertorm rotation about y axis to coincide it with z axis. (see Figs. 6.6 (c) and (d) )

jos}

. Perform the desired rotation 6 about the 7z axis.

SN

- Apply the inverse rotation about y axis and then about x axis to bring the rotation axis
back to its original orientation.

o

- Apply the inverse translation to move the rotation axis back to its original position.

z
a) Axis of rotation b) Translation of the
defined by points rotation axis to the
P,and P, coordinate origin
Yy
0
I
e
4 X
z
c) Rotation of unit d) Rotation of unit
vector about x axis to vector u about y axis
bring it into xz piane to align it with the z axis
Fig. 6.6

As shown in the Fig. 6.6 (a) the rotation axis is defined with two coordinate points P; and
P, and unit vector u is defined along the rotation of axis as
\

u=—=(ab,c
|V
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where V is the axis vector defined by two points P, and P, as
V = P,-P,
= (=X Y2= Y1 22-2)
The components a, b, and ¢ of unit vector u are the direction cosines for the rotation axis
and they can be defined as

X2 =% b_Yz‘Yl Zy — 7,

a = - — = -
VI

v v

As mentioned earlier, the first step in the transformation sequence is to translate the
object to pass the rotation axis through the coordinate origin. This can be accomplished by
moving point P, to the origin. The translation is as given below

Fi 0 0 0]

RS AT AR

.

Now we have to perform the rotation of unit vector u about x axis. The rotation of u
around the x axis into the xz plane is accomplished by rotating u' (0, b, ¢) through angle «
into the z axis and the cosine of the rotation angle« can be determined from the dot product
of u" and the unit vector u, (0, 0, 1) along the z axis.

u-u,

cosa = ,—=E where u’ (0, b, ¢) =bJ + cK and
'ul]uzi d
w,(0,0,1) =K

- ¢
Ju']

= L' Since |u,| =1
u]

- <
d

where d is the magnitude of u':
d=+b?+c
Similarly, we can determine the sine of a from the cross product of u’ and u,.
u'xu, = u |u'| |u,|sina .. (6.3)
and the Cartesian form for the cross product gives us

u'xu, = u_-b .. (6.4)
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Equating the right sides of equations 6.3 and 6.4 we get
u, |u’| |u,| sina=u,.b

b

u'| |u,| sina

b

sina —_—
1u “uz|

11

since |u,] =Tand |u'| =d

This can also be verified graphically as shown in Fig. 6.7

Fig. 6.7
By substituting values of cos a. and sina the rotation matrix R, can be given as
1 0 0 0]

0 c¢/d b/d 0
0 -b/d c/d 0

0 0 0 1

Next we have to perform the rotation of unit vector about y axis. This can be achieved by

rotating u” (a, 0, d) through angle B onto the z axis. Using similar equations we can determine
cos 3 and sin B as follows.

We have angle of rotation= -8

”n
u -u
——% where u"=al + dK and

cos (-B) = cosP=—
'u ||L11|

u, =K

Y4
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Y
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d

- |uu||u_z|

d

NG
d
Va? +d?
Consider cross product of u” and u,,_
wu, = u, [u’] u,| sin (-p)
= —u, [u'| |u,] sinp
Cartesian form of cross product gives us
g" xu, = u,(+a)

Equating above equations,

- |u"| |u,| sinB = a
, -a
sinf = —
|u” [
-a
= "
u'|
B —-a
va? +d?
_ 2, 2
but we have, d =+4b+c
cosP = d
Vva? +d?
_ b? +c?
a? +b? +c?
) -a
and sinf =
a?+d?
—a

" |

“ sin(-0) =-~sin®

volu,] =1
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By substituting values of cos f and sin § in the rotation matrix R, can be given as

Let

. Resultant rotation matrix R,,

Xy

We have,

-1

Using above equation we get inverse of R, as

-1 _
ny =

1 0 0 0] Ao 2
c +b |V| lV
0 s 0 0 1 0
~ /R)/=
0 2 < o A g M
AR | V] Y
_0 0 0 l_ 0 0 0
=R, R,
A A
| VI [V
-ab ¢ b 0
VL & |V]
—ac b ¢
IVIL & |V
| 0 0 1]
(-1)"*) det M;;
detT
'L —ab —ac OT
IV [V]A |[VA
o £ 2
A A
a b
V| V] V]
L0 0 0 1]

b? +c? 0 +a
\[az+b2+c2 \/a2 +b2 +c?
0 1 0

-a b? +c?
Ja? +b? + 2 Ja? +b2 + 2
| 0 0 0

A = vb%+c?and |V] = Vva?+b? +¢?

.
0

0

OT

o
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Inverse of translation matrix can be given as

1 0 0 0]
0 1 0 0
T! =
0O 0 1 0
;Xl yi zy 1]

With transformation matrices T and R,, we can align the rotation axis with the
positive z axis. Now the specified rotation with angle 6 can be achieved by rotation
transformation as given below

[ cos® sin® 0 0]
-sin® cos6 0 O

0 0 10

0 0 0 1]

To complete the required rotation about the given axis, we have to transform the
rotation axis back to its ori%inal position. This can be achieved by applying the inverse
transformations T~ and Rj,. The overall transformation matrix for rotation about an

arbitrary axis then can be expressed as the concatenation of five individual
transformations.

R@) = T-R,, ‘R, Ry, T

Tt 0 o0 0] X o A 0l cos6 sin® 0 0]
|V |V
0 1 o0 of|m@ ¢ b 4|i-sin® cos® 0 0
ie R(®) = MV A |V
0 0 1 0 -ac -b ¢ 0 0 0 10
MV AV
L—x] -y1 -z 1] 0 0 o 1L 0 0 0 1
A -ab o —ac lrp o 0 0]
V] A|V| A|V]
0 < boslj0 1 00
A A
a b ¢ 4{0 0 1 0
VI [V VY
00 0o 1| Y1 z&m 1
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6.6 Reflection with Respect to Given Plane

6.6.1 Reflection with Respect to xy Plane

Consider point P(x, y, z). The reflection of
this point with respect to xy plane is given by
ponit P'(x, y, - z), as shown in Fig. 68.
Corresponding to this reflection the
transformation matrix can be given as

? P(x,y 2)

1 0 0

J»(x,y,O)/
M=|(0 1 0 :
s |

0 0 -1 P'x, v, -2)

Fig. 6.8

Yy

6.6.2 Reflection with Respect to Any Plane

Often it is necessary to reflect an object through a plane other than x =0 (yzplane),y=0
(xz plane) or z = 0 (xy plane). Procedure to achieve such a reflection (reflection with respect
to any plane) can be given as follows :

1. Translate a known point P,, that lies in the reflection plane to the origin of the
co-ordinate system.

2. Rotate the normal vector to the reflection plane at the origin until it is coincident with
+ve z axis, this makes the reflection plane z =0 co-ordinate plane i.e. xy plane.

3. Reflect the object through z = 0 (xy plane) co-ordinate plane.

4. Perform the inverse transformation to those given above to achieve the result.

Let P, (x,, Yo 2,) be the given known point. Translate this point to the origin by using
corresponding translation matrix

[ 1 0 0 0

0 1 0 0

T =
0 0 1 0
™% Yo TZ, ]J
Let the normal vector N = nI+nJ+nK
IN| = +/nf+n?+n?

and A = yn? +n3
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As we want to match this vector with z axis, (so that the plane of reflection will be
parallel to xy plane), we will use the same procedure as used in rotation.

A L
IN| IN|
N LI AL S T
Ry =] AN A [N
“yn3 -n, ny 0
AMN RN
| 0 0 0 1]
As seen earlier for reflection about xy plane we have
1 0 0 0]
01 00
M =
00 -10
00 0 1]
Now for inverse transformation we have,
1 0 0 0]
0 1 0 0
T =
0 0 1 0
_Xo Yo Zo 1_
(i -nyn, -nn, 0_
IN[ AN AN
o s M2
R, = A A
Mmoo o s )
IN| N} IN|
| 0 0 0 1]

Resultant transformation matrix can be given as
-1 -l
Ry = T-R,,-M-R, - T

Ex.6.1:  Find the matrix for mirror reflection with respect to the plane passing through the origin
and having a normal vector whose directionis M =1+ J + K :

Sol. : Here, P, (0, 0, 0) and the plane passes through the origin hence translation

matrix is not necessary.
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The normal vector N = I+ ]+ K
n, =1, ny=1, ny=1

IN| = V3 and A =2
-

— 0 0

-1 _]—
J2
-1 -1

0

0

Xy

0 0 01
.. The reflection matrix is given by

Rr = R,,-M-Rjy
(13 -2/3 -2/3 0]

~2/3 1/3 -3 0
~2/3 -3 +1/3 0

0 0 0 1

L
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Solved Examples

Ex.6.2:  Obtain transformation matrix for rotation about the line joining the points (0, 0, 0) and
(1,1, 1) with the angle of rotation 45° in counter-clockwise sense.

Sol.: In this case the line passes through the origin, so the translation is not
required. Therefore, R, can be given

Ry = R, -R-R

by usual notations, .’
A J1+1= V2
V] = J1+1+1=43

Here,a = 1, b = 1, ¢ = 1. By using derived rotation matrices for R,,, R and R;; from

section 6.5 we have

(V2 1 | 1 1 i
X200 — o — — 0 0
N 2 N2
R, =|v6 V2 V3 |R=[V2 V2
-1, 0 0 10
Jo V2 3 ,
0O 0 0 1 (0 0 01
'ﬁ—l—lo‘
J§~/€J§
1_
0 — = 0
Ry = V2 V2
11 1,
3 V3 43
0 0 o 1]

R; = R,, -R-Ry

[0.80473  0.5058 ~—0.3106 0]
-0.3106 0.80473 0.5058 0
0.5058 -0.3106 0.80473 0

0 0 0 1

Ex.6.3: A triangle is defined by 3 vertices A (0, 2, 1) B, (2, 3, 0), C (1, 2, 1). Find the final
co-ordinates after it is rotated by 45°around a line joining the points (1,1, 1) and (0, 0,0).
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Sol.: The required transformation matrix for this example is already obtained in
previous example.
FAI-I —A-I
B, = B Rr
C C

[0 2 1 0] [ 0.804 0.505 -0.3106 OW
2 3 0 0] {-0.3106 0.804 0.505 0

1210 0.5058 -0.3106 0.804 O

0001 0 0 0 1

[-0116 1.297 -1.814 O
0.676 3.422 0.893 0

0.687 1.802 0998 O

0 0 0 1

Therefore final co-ordinates are: A’ (-0.116, 1.297, - 1.814)
B’ (0.676, 3.422, 0.893)
C' (0.687, 1.802, 0.998)

Ex.6.4: A triangle is defined by 3 vertices A (0, 2, 1) B (2, 3, 0), C (1, 2, 1). Find the final
co-ordinates after it is rotated by 45°around a line joining the points (2,2, 2)and (1,1, 1).

Sol.: Here the given axis of rotation is not at the origin, therefore translation
matrix is required. The translation matrix can be given as :
1 0 O OW
0o 1 00
T =
0O 0 1 0
-1 -1 -1 1)

Therefore the inverse of translation matrix can be obtained as




Computer Graphics 213 3-D Concepts

1T 0 0 07
01 0 0f
o= f
00 l(u
i

I 11 1

[t canbe seen that after translatihg the given axis to the origin we getline points as (1,1,
1) and (0, 0, 0) which are same as the line points considered in the previous example. The
rotation angle (459 in this example also matches with that in the previous example.
Therefore we can use resultant matrix of the previous problem, in deriving the
transformation matrix for the given problem. The transformation matrix for this problem
can be given as

Ry = T-R.-R-R-1T"

Substituting resultant matrix from the previous problem we have,
I[ 0.8047 0.505 ~).310 Ol11 0 0 0
i

~0.3106 0.8047 0505  0llo 1 0 0

0.505  -0.3106 0.80473 O! 0 0 1 01
b !

L0 0 0 1hir oy

0 0 O] 0.804 0505 -0.310 0]

0 1 0 0]]-0.310 0.804 0.505 0

0 0 1 0 0.505 -0.310 0.804 0

-1 -1 -1 1 1 1 ] 1

L 4 bt -

[ 0.8047 0.505 -0.3106 0

-0.3106 0.8047 0.505 (

0.505 -0.3106 0.8047 O
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1

>

r——
8 :
P —

>.

os]

os]

,________
@]
-

0 2 1 0] [ 0.8047 0.505 -0.31006 ()1
2300 -0.3106 0.8047 0.505 0

1 210 0.505 -0.3106 0.8047 0

0001 o© 0 0

Calculation part is left for the student as an exercise.
Ex. 6.5 A cube defined by 8 vertices
A,0,00 B 00 C(220 D020
E(,0,2) F(202 G222 HI(, 22

Find the final co-ordinates after it is rotated by 45° around a line jonning the
points (2,0, 0) and (0, 2, 2).

Sol: Let P (2,0, 0) and Q (0, 2, 2)
Step 1 : Shifting the arbitrary axis to origin by using translational matrix.
"1 0 0 0]
0100
T = .
0 010
-2 0 0 1]

Step 2 : Finding inverse translation matrix
(1 0 0 0]

0100
T =
0010

2 0 0 1)
Step 3 : Finding matrix for coinciding the given axis with the z axis
Here, a=2 b=-2 c=-2

by usual notations, A = b2 +c?
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V] = Ja?+b?+
o= Jd+d
=8
=22

V] =427 +(-2)7 +(-2)

By using derived rotation matrix for R,

2 |
2, Ly
V3 V3
1oL 2
Ry =|+6 V2 3
[ DI Tl
Vo V2 V3
L0 0 0 1
Step 4 : Finding R},
By using derived rotation matrix for R;:,
AT
v3 J6 Vo
-1 1
0 — — O
R = J2 N2
S R R
V3 V3 B
0 0 0 1}

Step 5 : Matrix for rotation about z axis. Here, 0 = 45°

T 1/V2 142 0 0]
~1/¥2 1/¥2 0 0

~.Resultant transformation matrix can be given as

Ry = T-R,,-R-Rj - T
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From the resultant matrix the final co-ordinates of the cube can be obtained as

AT A
S
t ]
B’ B
- C
D D
= R,
Ky E
P |
G G
H| O H]

Calculation part is left for the student as an exercist.
Ex. 6.6: A mirror is placed vertically such that it passes througl the points (10, 0) and (0, 10).
Find the reflected view of triangle ABC withi co- ordinales / (5.50), B(20,40), C(10. 70)

Sol.: The Fig. 69 shows the
representation  of reflection plane.  As y
shown in the Fig. 6.9.
intercept on x axis : 10
intercept on y axis : 10
. . (0,10) K
mtercept on z axis @ =%

The equation of the plane using
intercept form can be given as

X ¥y _
10 10 x
* i X 1=0
1010
Fig. 6.9
1 1
The normal vector = — 1 +—]
10 10

e
10 10
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Normalizing,

n,

~ Translating the given plane

IN|

[1/10.1710,0]

[1/

i
!

V

10, 1/10,0 |

l J

100 100

!

and n, =0

0]

0 1

0
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/2 -1/N2
0 0
R, =
N2 /N2
Lo
1 0 0 o'll
|
0 1 0 0
M = |
00 -1 0
1
|
P
0 0 0 1]

-, Resultant transformation matrix is given by

Ry = T-R- M
01 00T
-1 0 0 0
R, =
0 010
0 0 01

A [AW

B’ i| = ‘B Ry
SR

"A’] 5 50 0
B'| =120 40 0
1| Llo 70 0

Ry T

3-D Concepts
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-50 -5 0 0
=[-40 =20 0 0
~70 -10 0 0

A" (=50, - 5), B' (- 40, - 20) and C" (- 70, - 10) are the co-ordinates of the reflected
triangle.

- Ex.6.7: - Describe the transformation M, which reflects an object about a line I,

Sol.: Let line L have a vy intercept (0, b) and an angle of inclination 0 degrees
(with respect to x axis).

.

We follow the steps given below to achieve the transformation

—

. Translate (0, b) to origin

D

2. Rotate by ~0 degrees so that line L algins with the x axis.
3. Mirror reflect about the x axis.

4. Rotate back by 0 degrees

5. Translate the origin back to the point (0, b).

By transformation notation we have,

M= TR, M_-R]'- T

Review Questions

1. Give the 3-D transformation matrix for
a) Translation
b) Scaling and
¢) Rotation
2. Derive the transformation matrix for rotation about an arbitrary axis.

3. Derive the transformation matrix for rotation about an arbitrary plane.

University Questions

1. Write a program to rotate any given solid object by an angle 6 about any arbitrary axis given
by the line-

y=mx+c (May-97)
2. Write are the sequence of transformations required to rotate an object about an axis PyP,

where Py =(xq, yg, ) and P =(x,, y,, »,) with angle 6. (May-98)
3. Develop a 3D transformation matrix for translation and rotation. {(May-2000)

4. Given a unit cube with one corner at (0, 0, 0) and the opposite corner at (1, 1, 1), derive the
transformations necesary to rotate the cube by '0' degrees about the main diagonal

(from (0,0, 0) to (1, 1, 1)) in the counter clockwise direction when looking along the diagonal
towards the origin. (Dec-2000)
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3. Give the sequence of transformations required Lo reflect the object about the line v =2x - 1(,
(May-2001)

6. What are the sequence of transformations required to rotate an object aboul an axis o P with

angle din clockwise direction ? {Dec-2001)

7. What are the properties ot concatenation ol transformations ? Derive a 2-dimensiona]
transformation matrix for rotating a point P(x; y,) aboul a line y = mx + ¢. (May-2002)

8. Hlustrate the rotation of a 3-13 object about an arbitrary axis with derivation. (May-2002)

9. Give the sequence of transformations required to reflect an object aboul the line y = mx + ¢
Derive compaosite transformation matrix for the same. - (May-2003)

aQa




Three Dimensional Viewing,
Projection and Clipping

»

7.1-Ir'1trod.u<.:tipn

- Inchapter 6, we have seen that two dimensional viewing operations transfer positions
from the world coordinate plane to pixel positions in the plane of display device. In three
dimensional viewing the situation is bit more complex, since we now have more options as
to how views are to be generated. First of all, we can view an object from any spatial
position : from front, from back or from above. Further more we can generate a view of what
we would see if we were standing in the middle of a group of objects or inside a single object.
Another important aspect must be considered in the three dimensional viewing is that even
though the object is three dimensional it must be projected onto the flat viewing surface of
the display device.

In this chapter, we discuss the general operations required to generate three
dimensional viewing. It includes the study of parallel and perspective projections, viewing
parameters and three dimensional dipping,.

7.2 Three Dimensional Viewing

As mentioned earlier, the 3D viewing process is inherently more complex than the 2D
viewing process. In two dimensional viewing we have 2D window and 2D viewport and
objects in the world coordinates are clipped against the window and are then transformed
into the viewport for display. The complexity in added in the three dimensional viewing is
because of the added dimension and the fact that eventhough objects are three dimensional
the display devices are only 2D.

The mismatch between 3D objects and 2D displays is compensated by introducing
projections. The projections transform 3D objects into a 2D projection plane. The Fig. 7.1
shows the conceptual model of the 31 transformation process.

In 3D viewing, we specify a view volume in the world coordinates using modelling
transformation. The world coordinate positions of the objects are then converted into
viewing coordinates by viewing transformation. The projection transformation is then used
to convert 3D description of objects in viewing coordinates to the 2D projection coordinates.
Finally, the workstation transformation transforms the projection coordinates into the
device coordinates.

(221)



Computer Graphics 222 Three Dimensional Viewing, Projection and Clipping

Modelling } Modelling World Viewing View
coordinates transformation coordinates transformation coordinates

Projection Projection Workstation Device
transformation coordinates transformation coordinates

Fig. 7.1 Conceptual model of 3D transformation process

7.3 Viewing Parameters

As mentioned earlier, we can view
Yoo the object from the side, or the top, or
even from behind. Therefore, it is
necessary to choose a particular view for
a picture by first defining a view plane.
Yy X, A view plane is nothing but the film
\ i plane in a camera which is positioned
z, and oriented for a particular shot of the
Pol*g. Yo. Zo) scene. World coordinate positions in the
scene are transformed to viewing
w coordinates, then viewing coordinates
are projected onto the view plane. A
z view plane can be defined by
establishing the viewing - coordinate
system or view reference coordinate
system, as shown in the Fig. 7.2

Fig. 7.2 Right handed viewing coordinate system

The first viewing parameter we must consider is the view reference point. This point is
the center of our viewing coordinate system. It is often chosen to be close to or on the surface
of some object in a scene. Its coordinates are specified as X, Yg and Zy.

The next viewing parameter is a view-plane normal vector, N. This normal vector is the
direction perpendicular to the view plane and it is defined as [DXN, DYN, DZN]. We know
that the view plane is the film in the camera and we focus camera towards the view reference
point. This means that the camera is pointed in the direction of the view plane normal. This
is illustrated in Fig. 7.3. (See on next page)

As shown in the Fig. 7.3, the view plane normal vector is a directed !ine segment from
the view plane to the view reference point. The length of this directed line segment is
referred to as view - distance. This is another viewing parameter. It tells how far the camera
is positioned from the view reference point. In other words we can sa ihat a view plane is
positioned view - distance away from the view reference point in the direction of the view
plane normal. This is illustrated in Fig. 7.4.

| B
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gy~ N
i .38y | _Camera
( .
N
1
)
3\ A g
1 (\0(((\
N
: O et S
View . '
reference ! /
point — " __ 1
; - -
4
d
4
Object
Fig. 7.3 View reference point and view plane normal vector
Yv
View
a— plane
e
6\‘5\3“0 2y
ol . X
Y et \,eﬁ\oﬂ v
2
o
9o
o
e
! N
1
1
LN |
reference !
point T T 'L_ e
, _-
’ ’ XW
/ ’
-
2 — Object

Fig. 7.4 3-D viewing parameters

As shown in the Fig. 7.4 we have world coordinate system which we used to model our
object, and we have view plane coordinates, which are attached to the view plane.
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Itis possible to obtain the different views by rotating the camera about the view plane
normal vector and keeping view reference pointand direction of N vector fixed, as shown in
the Fig. 7.5

e

Fig. 7.5 Rotating view plane

At different angles, the view plane will show the same scene, but rotated so that a
different part of the object is up. The rotation of a camera or view plane is specified by a
view-up vector V [ XUP YUP ZUP| which is another important viewing parameter.

We canaalso obtain a series of views of a scene, by keeping the view reference point fixed
and changing the direction of N, as shown in the Fig. 7.6 changing the view plane normal
changes the orientation of camera or view plane giving different views.

V(view-up vector)

e

Fig. 7.6 Viewing object by changing view plane vector N

In this section we have seen viewing parameters such as view reference point, view
plane normal vector, view-distance and view-up vector. These parameters allow the user to
select the desired view of the object.
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7.4 Transformation from World Coordinate to Viewing Coordinates

The conversion of object description from world coordinates to viewing coordinates is
achieved by following transformation sequence.
Lo Translate the view reference point Lo the origin of the world coordinate system.
2. Apply rotations to align the x, y_and z_ axes with the world coordinate X Yoo aNd 7
axes, respectively.
The view point specified at world position (x},, Ypr 4p) can be translated to the world
coordinate origin with the matrix transtormation
Pl 0 0 0]
0 1 0 0
0 0 l 0

P=r.T

Foralignrent of three axes we require the three coordinate-axis rotations, depending on
the direction we choose for N. In general, if Nis not aligned with any world coordinate axis,
we can align the viewing and world coordinate systems with the transformation sequence
R,-R,-R,. That is, we first rotate around the world x,_ axis to bring z, into the x,, z,, planc.
Then, we rotate around the world Y axis to align the z and z, axes. Finally, we rotate about
the z axis to align the v, and y_axes. In case of left handed view reference system, a
reflection of one of the viewing axes is also necessary. This is illustrated in Fig. 7.7.

Yw Y, X, Yw Yw
wzv
yV XV
z, Y
X
Xw / Xw ‘;/ ¥ —e X,
Zw ZW . Zw
(a) Original positions (b) Translation (c) 3 axes rotation

Fig. 7.7 Aligning of viewing and world coordinate axes using a sequence of translate - rotate
transformations
Therefore, the composite transformation matrix is given as
Te = T-R\~R).~R,
There is another way to generate composite rotation matrix. A composite rotation

matrix can be directly generated by calculating unit u, v, n vectors. If we know N and V
vectors, the unit vectors are calculated as

N
n = ——=(n;, Ny ny)
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u = — =(U), Uy 1y)  v=nxu=(vy, v,y Vy)

This method of generating composite rotation matrix automatically adjusts the direction
of V so that v is perpendicular to n. The composite rotation matrix for the viewing
transformation is given as

U, v, on
U, Vo N,

|u3 Vs Ny
L 0 0 0

- O C C

This transforms u onto the world x, axis, v onto the Yw axis, and n onto the z,. axis.

Furthermore, this matrix automatically performs the reflection necessary to-transform a
left-handed viewing system onto the right handed world system.

With second method, the composite transformation matrix is given as
T.=T-R

s

7.5 Projections

After converting the description of objects trom world coordinates to viewing
coordinates, we can project the three dimensional objects onto the two dimensional view
plane. There are two basic ways of projecting objects onto the view plane: Parallel projection
and Perspective projection.

7.5.1 Parallel Projection

In parallel projection, z - coordinate is discarded and parallel lines from each vertex on
the object are extended until they inersect the view plane. The point of intersection is the
projection of the vertex. We connect the projected vertices by line segments which
correspond to connections on the original object.

View plane

Object

Fig. 7.8 Parallel projection of an object to the view plane

As shown in the Fig. 7.8, a parallel projection preserves relative proportions of objects
but does not produce the realistic views.
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7.5.2 Perspective Projection

The perspective projection, on the other hand, produces realistic views but does not
preserve relative proportions. In perspective projection, the lines of projection are not
paraliel. Instead, they all converge at a single point called the center of projection or
projection reference point. The object positions are transformed to the view plane along
these converged projection lines and the projected view of an object is determined by
calculating the intersection of the converged projection lines with the view plane, as shown
in the Fig. 7.9. »

View plane

Converged
projection N
lines s
S
~olenter of

projection

Fig. 7.9 Perspective projection of an object to the view plane

7.5.3 Types of Parallel Projections

Parallel projections are basically categorized into two types, depending on the relation
between the direction of projection and the normal to the view plane. When the direction of
the projection is normal (perpendicular) to the view plane, we have an orthographic parallel
projection. Otherwise, we have an oblique parallel projection. Fig. 7.10 illustrates the two
types of parallel projection.

View plane

View
plane
normal

View plane
View plane Vigw p!ane
(front view) (side view)
(a) Orthographic parallel projection (b) Oblique parallel projection

Fig. 7.10
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7.5.3.1 Orthographic Projection

As shown in Fig. 7.10 (a), the most common types of orthographic projections are the
front projection, top projection and side projection. In all these, the projection plane (view
planc) is perpendicular to the principle axis. These projections are often used inengineering
drawing to depict machine parts, assemblies, buildings and so on.

The orthographic projection can display more than one face of an object. Such an
orthographic projection is called axonometric ofthographic projection. It uses projection
plancs (view planes) that are not normal to a principle axis. They resemble the perspective
projection in this way, but differ in that the foreshortening s uniform rather than being
related to the distance from the center of projection. Parallelism of lines is preserved but
angles are not. The most commonly used axonometric orthographic projection is the
isometric projection.

1 he isometric projection can be generated by aligning the view plane so that itintersects
cach coordinate axis in which the object is defined at the same distance from the origin. As
shown in the Fig. 7.11, the isometric projection is obtained by aligning the projection vector
with the cube diagonal. It uses an useful property that all three principle axes are equally
foreshortened, allowing measurements along the axes to be made to the same scale (henee
the name : iso for equal, metric for measure).

Projection
plane

Projector

Projection
plane
normal

Fig. 7.11 Isometric projection of an object onto a viewing plane

7.5.3.2 Oblique Projection

An obligue projection is obtained by projecting points along parallel lines that ave not
perpendicular to the projection plane. Fig. 7.10 (b) shows the oblique projection. Notice that
the view plane normal and the direction of projection are not the same. The oblique
projections are further classified as the cavalier and cabinet projections. Por the cavalier
projection, the direction of projection makes a 45°angle with the view planc. Asa result, the
projection of a line perpendicular to the view plane has the same length as the line itsclf; that
is, there is no foreshortening. Fig. 7.12 shows cavalier projections of a unit cube with o = 45¢
and o = 30°
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45° L 3Of____

(@) (b)

Fig. 7.12 Cavalier projections of the unit cube

When the direction of projection makes an angle of arctan (2) = 63.4°with the view plane,
the resulting view is called a cabinet projection. For this angle, lines perpendicular to the
viewing surface are projected at one-half their actual length. Cabinet projections appear
more realistic than cavalier projections because of this reduction in the length of
perpendiculars. Fig. 7.13 shows the examples of cabinet projections for a unit cube.

1/2 1/2

0
a )4 a=30°

(@) (b)

Fig. 7.13 Cabinet projections of the unit cube

7.5.4 Types of Perspective Projections

The perspective projection of any set of parallel lines that are not parallel to the
projection plane converge to a vanishing point. The vanishing point for any set of lines that
are parallel to one of the three principle axes of an object is referred to as a principle
vanishing point or axis vanishing point. There are at most three such points, corresponding
to the number of principle axes cut by the projection plane. The perspective projection is
classified according to number of principle vanishing points in a projection : one-point, two
points or three-point projections. Fig. 7.14 shows the appearance of one-point and two-point
perspective projections for a cube.
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y - Cd ~ > 7
- Pl Va
- e 7
d
e
7
s
4
d
4
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X
21
& (b)
g::crg":iagi One-point
P perspective
projection
— / N~ -
X axis o -0 x axis
vanishing - - vanishing
point point
(c)
Two-point
perspective
projection

Fig. 7.14 Perspective projections

The Fig. 7.15 summarizes the logical relationship among the various types of projections

Planar geometric

projections
Parallel Perspective '
Orthographic Oblique One Two Three
I -point -point -point
Top Front Axonometric  Side
(plan) (elevation) elevation
Cabinet Cavalier Other
Isometric Other

Fig. 7.15
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7.5.5 Transformation Matrices for General Parallel Projection

7.5.5.1 On XY Plane

View plane

/

Xo, 0
202 Y2 )—-v=xpl+ Yol * 2,K
Point on the X
object

| Projected point

Pi(X4,¥q. 2
“1X4, Y 10)/"/!3

4

Fig. 7.16

X; = X +X,u

In a general parallel projection, we
may select any direction for the lines of
projection. Suppose that the direction of
projection is given by the vector [xp Yo
z,] and that the object is to be projected
onto the xy plane. If the point on the
object is given as (x,, y,, z,), then we can
determine the projected point (x,, y,) as
given below :

The equations in the parametric
form for a line passing through the
projected point (x,, y,, ;) and in the
direction of projection are given as

Y2 = YitYpu
z, = z;+z,u
For projected point z, is 0, therefore, the third equation can be written as,
0 =2z+4z,u
-z
u= -1

Zp

Substituting the value of u in first two equations we get,
X, = Xq +X, (-2,/2))
Y2 = V1+Y, (2i/2)
The above equations can be represented in matrix form as given below :
1 0
Do yol = Iy 2] 0 1

~Xp/Zp =Yr/Zp

and

or in homogeneous coordinates we have,

1 0 00
[ 1= 1 0 1 090
X2 Y2 2, = X1 Y1 24
Xp/2p ~Yp/zp O 0
0 0 01
ie. P, = P, Par,

This is the general equation of parallel projection on xy plane in matrix form.

Here, we ignore the value of z, when drawing the projected irnage.
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7.5.5.2 On Given View Plane

yd

. V=xpl+ pr+sz

I
L g

plane "Ry

/ Py (X4, Y9, Z9)
Kk X

N=nq/+nyd + n3K

z% View Py(xa, ¥2. 25)

Fig. 7.17

From the above
transformation matrix we can
derive the general equation of
parallel projection onto a given
view plane instead of xy plane in
the direction of a given vector
VX Yer z,) as follows:

Let us consider that R, is the
view reference point, P, is the
object point and P, is the
projected point. Now perform
the following steps :

1. Translate the view reference point R, of the view plane to the origin using the

translation matrix T.

2. Perform an alignment transformation R, so that the view normal vector N of the view
plane points in the direction K, the normal to the xy plane.

3. Project point P, on to the xy plane.

4. Perform the inverse of steps 2 and 1.
= T-R,,-Par, Ry -T"

-~ O O O

Parv,N,R“
1
10
| o
Xo Yo
A ng
IN| AN}
0 N3
A
s LY
IN|  |N]
| O 0

ny

mo 1 0 00
np ol |0 1 00
IN| e g g
s ool | % %

IN]| 0 0 01
0 1]

0 0

0 0

1 0

z. 1

This is the general equation of parallel projection on the given view plane in matrix

form.
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7.5.6 Transformation Matrix for Oblique Projection onto xy Plane

Oblique projections to the xy plane can be specified by a number f and an angle6. Here f
prescribes the ratio that any line L perpendicular to the xy plane will be foreshortened after
the projection. The angle 6 is the angle that the projection of any line perpendicular to the xy
plane makes with positive x axis.

To find the projection transformation, we need to determine the direction vector V.
From Fig. 7.18, with line L of length I, we choose vector V to have the direction same as that
of vector PP, .

V=DPP=xI+y,J]-IK

Pa(x2, 2, 0)

Y2

X
2
LineL

P,(0,0. 1)

Fig. 7.18
Comparing with
V= xpl+ypJ+2,K

we get,
Xp = X, =fcos0
Yp = Y, =[sin0
z, = —|

.Using result of previous article, we have
1 0

1
Par, = | fcos® fsin®

l l
0 0

< O O O
= O O O

This is the general form of an oblique projection onto the Xy plane.
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7 5.7 Transformation Matrix for Perspective Projection

Let us consider the center of T
projection is at P(x., Yo z.) and the y
point on object is P (x5, Y1, z,), then the ﬂ
parametric  equation for line 1p, (xy. vy, 24) View plane
containing these points can be given as |_Projected point
Point on the Po(x2, Yo, 0)
X, = X, + (X, = %) u object -
- ‘~\.Cer_11er_of
Y2= Y+ (Y1 - Yo u ] projection PelXe Ye: 2)
zy=2.+(z,—z)u
For projected point z, is 0, z

therefore, the third equation can be

written as Fig.7.19

0

]

z.+(zy-z)u
z

u = - <

zZ, -2

<

Substituting the value of u in first two equations we get,

Xy — X
X, = X =2, ——
Zy —Z,
_ XeZ) mXZe T X% F X Ze
Z) — 2,
X.Z1 — X412
- c“l 1<c and
Zy — 2
.
— Y1~ Ve
Yo = Ye— 2
Zy —Z,
- YCZl_YCZc_Y1Zc+YCZc
Zy — 2,
_ Yh Y%
Zy =2,

The above equations can be represented in the homogeneous matrix form as given
below :

-z. 0 0 O

0 -z. O
X2 ¥y, 22 1= N z% 1] <. y. 0 1
0 0 0 -z

Here, we have taken the center of projection as P(x., y. z.). If we take the center of
projection on the negative z-axis such that
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x =0
y=20
z = -2z
iLe. P[0, 0, - z.) then we have
y
Py(x4.¥4,24) View
Point on ‘\&:2 Y2 22) plane
the object T I AP.OA, ~ AP_BA,
: oz X Z
» P.(0, 0, -z.) e %2 21%
A, ik, 0.0F " 1" Center of projection S 17 %
Xo, T imilarly, .
- 2 %2, 2~ P c < Yy yp= Y12
X2 0(0,0,0) zy* zZ
Aq(x4, 0, 24) 24
' *1 277B (0,0, 24)
Z
Fig. 7.20
‘= Z.X
zZ.+ 2
Ze¥h
zZ.+z,
z, =0 .
Thus we get the homogeneous perspective transformation matrix as
z. 0 0 0
0 z. 0 O
[x z, 1]= [x z, 1] c
2 Y2 & 1 Y1 4 0 0 0 1
0 0 0 z

7.6 Three Dimensional Clipping

In chapter 6, we have seen the concept of window, which served as clipping boundary
in two-dimensional space. In three dimensional space the concept can be extended to a
clipping volume or view volume. The two common three dimensional clipping volumes
are a rectangular parallelepiped, i.e. a box, used for parallel or axonometric projections, and
a truncated pyramidal volume, used for perspective projections. Fig. 7.21 shows these
volumes. These volumes are six sided with sides : left, right, top, bottom, hither (near), and
yon (far).
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Fig. 7.21

The two-dimensional concept of region codes can be extended to three dimensions by
considering six sides and 6-bit code instead of four sides and 4-bit code. Like
two-dimension, we assign the bit positions in the region code from right to left as

Bit 1 =1, if the end point is to the left of the volume

Bit 2 = 1, if the end point is to the right of the volume
Bit 3 = 1, if the end point is the below the volume
Bit 4 =1, if the end point is above the volume

Bit 5 =1, if the end point is in front of the volume
Bit 6 = 1, if the end point is behind the volume

Otherwise, the bit is set to zero. As an example, a region code of 101000 identifies a point
as above and behind the view volume, and the region code 000000 indicates a point within
the view volume.

A line segment can be immediately identified as completely within the view volume if
both endpoints have a region code of 000000. If either endpoint of a line segment does not
have a region code of 000000, we perform the logical AND operation on the two endpoint
codes. If the result of this AND operation is nonzero then both endpoints are outside the
view volume and line segment is completely invisible. On the other hand, if the result of
AND operation is zero then line segment may be partially visible. In this case, it is necessary
to determine the intersection of the line and the clipping volume.

We have seen that determining the end point codes for a rectangular parallelepiped
clipping volume is a straight forward extension of the two dimensional algorithm.
However, the perspective clipping volume shown in Fig. 7.21(b) requires some additional
processing. As shown in the Fig. 7.21(b), the line connecting the center of projection and the
center of the perspective clipping volume coincides with the z axis in a right handed
coordinate system.
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Fig.7.22 shows a top view of the perspective clipping volume. The equation of the line
which represents the right hand plane in this view can be given as
z-2z¢
X = ————Xg=2Z0, +0Q,

Zy —Z¢

where
XR
a; = ——— anda,=-a, z¢
2y ~Zc

This equation of right hand plane can be used to determine whether a point is to the
right, on or to the left of the plane, i.e., outside the volume, on the right hand plane, or inside
the volume. Substituting the x and y coordinates of a point P into x - z o, — a, gives the
following results

fr=x-z0;-a, >0 if P is to the right of the right plane
=0 if P is on the right plane
<0 if P is to the left of the right plane
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Similarly, we can derive the test functions for the left, top bottom, hither and yon planes.

Table 7.1 shows these test functions.

Plane Test functions with Results
Right fr=x-zo;-a, >0 if P is to the right of the right plane
=0 if P is on the right plane
<0 if P is to the left of the right plane
~ where oy = zYX—l—{zC and a,=-0;Z:
Left fL- =x-zB8-b <0 ifPis to the left of the left plane
=0 if Pis on the left plane
>0 if Pis to the right of the left plane
where B, = ZYX_LZC and B, = - B, ¢
Top fr=y-zvy,-y, >0 if P is above the top plane
=0 if P is on the top plane
<0 if P is below the top plane
where Y = Z—Yy_T—ZC— and vy, = -V Z¢
Bottom fy=y-28,-8, <0 if P is below the bottom plane
=0 if P is on the bottom plane
>0 if P is above the bottom plane
where 8, =2c andd,;=-0;2¢
Hither fa=z-2zq4 >0 if P is in front of the hither plane
=0 if P is on the hither plane
<0 if P is behind the hither plane
Yon f,=2-2, <0 if P is behind the yon plane
=0  if Pis on the yon plane
>0 if Pisin front of the yon plane

Table 7.1 Test functions for six planes of clipping volume
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7.7 Three - Dimensional Midpoint Subdivision Algorithm

In the previous section, we have seen how to identify location of the end points of line
segments with respect to clipping volume. Once this process is over we can determine which
line segments are completely visible, which are completely invisible and which are partially
visible. For partially visible segment we have to determine the intersection with clipping
volume. This can be achieved with the help of three - dimensional midpoint subdivision

algorithm. It is an extension of 2D midpoint subdivision algorithm discussed in section
6.3.2.2.

Algorithm :

1. Find the locations of endpoints (endpoint codes) of line segments with respect to clipping
volume (using test functions in case of perspective clipping volume)

2. Check visibility of each line segment

a) If codes for both endpoints are zero then the line is completely visible. Hence draw the
line and go to step 4.

b) If codes for endpoints are not zero and the logical ANDing of them is also nonzero the
line is completely invisible, so reject the line and go to step 4.

¢) If codes for two endpoints do not satisfy the conditions in 2 a) and 2 b) the line is
partially visible.

3. Divide the partially visible line segments in equal parts and repeat steps 1 and 2 for
subdivided line segments until you get completely visible and completely invisible line
segments. Draw the visible line segment and discard the invisible one.

4. Stop.

Solved Examples

Ex.7.1:  Under the standard perspective, what is the projected image of
a) a point in the plane z = - z,
b) the line segment joining P, (1, - 1, - 3 z,) to P, (3, 1, 0)
Sol.:
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a) The plane z = - z_is the plane parallel to xy view plane and is at a distance of z_ units
from it. The centre of projection P (0,0, -z ) lies on the plane. If P(x, y, - z.) is any point in this
plane, the line of projection PP does not intersect the xy view plane. Thus P(x, y, - z/) is said
to be projected out to infinity ().

b) The given line P,P, passes through the plane z = - z. The equation of the line is given
by .
x =1+2t y==1+2t z=-3z.+3zt

Applying the standard projection to the equation of the line, we get

z. 0.0 0 . -
0 =z,
[1+2t —-1+2t -3z +3zt 1] =[z +2zt -z +2zt 0 -2z, +3zt]
0 0 0 1
0 0 0 z

Changing to 3D co-ordinates, the equations of the projected line segment are
zc+2zt  1+2t

* T 2z 13zt -2+3t

-z +2z b -14+2t
Y = 32 13zt -2+3t
z =20

Ex.7.2:  Using the origin as the centre of projection, derive the perspective transformation onto the
plane passing through the point P, (x, Yy, z,) and having the normal vector
N = n,I + n,] + n;K.

Sol.: Let P, (x;, Y1, z;) be projected onto P, (x,, y,, z,). From Fig. 7.24 we see that
the line segments P;O and P,O are along the same line. Hence there exists a constant
"0’ such that P,O = uP,0. Comparing the corresponding components, we get

X, =ux;

Y2 =uy, ' (1)
22 =uZl

oy

N =nyl+ nyJ + ngK

-~ "1~
- / P1(X1, Y1. Z4)

Pdxs. Y2 22)

Fig. 7.24




Computer Graphics 241 Three Dimensional Viewing, Projection and Clipping

We now find the value of u. As any point P, (x,, y,, z,) lying on the plane satisfies the
equation

nx; + Nyy, + N3z, = d,
where dy = nyxy + nyy, + n,y z,
Putting values of x,, y, and z, into the above equation, we have
ny(u x;) + 0y (uy,) + ny (uz,) =d,
. dU

nXy +Nyy, +Nn,y2,

u =

This projection transformation can be represented using homogeneous ‘coordinate
representation for 3D points as follows

dy 0 0 n

0 d 0 n
Perng, = 1o ¢ dy nz

0 0 0 0

Application of this matrix to homogeneous representation P,(x,, Y1, 2, 1) of point P,
gives Py(dy x;, dyy;, dyz, nyxy + nyy; + ngz,), which is homogeneous representation of
Py(x, ¥a, 2,) found above i.e. in matrix form,

dy 0 0 n
0 d 0 n
x; y1 2z 1] X 2= [dox; dyy; dyzy nyx+nm, Y1+ 1n32]

0 0 dy n,
0O 0 0 o

Ex.7.3:  Find the perspective projection onto the view plane z = z_ where the centre of projection is

the origin 0(0, 0, 0).
Sol : The plane z = z_ is parallel to xy plane and is z_ units away from it. Thus

view plane normal N is same as normal vector k to the xy plane. i.e. N = K. Choosing
the view reference point as Ry(0, 0, z), then from the problem 7.2 we get the
parameters as

N (n;, ny, ny) = (0,0,1)
and Ry (X0 Yor 2g) = (0,0, z)
So dy = n;Xo + Ny, + nyz,,
=z,

-The projection matrix is
z. 0 0 O
0 z. 0 0

Pery ¢, =

0 0 z. 1
0 0 0 O

Ex.74: Derive the general perspective transformation onto a plane with reference point
Ro(x,, Yo 20), normal vector N = n,1 + n,] + n;K, and using C (a, b, c) as the centre of
projection, '
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Sol.: From Fig. 7.25 we see that the line segments CP, and CP, are along the
same line. Hence there exists a constant 'u’ such that CP, = uCP,. Comparing the
corresponding components we have

Xo = a+(x;—aju
Yy, = b+(y;-b)u
Z, = C+(z;-qu
y -
. N=ngl+na+ngK
Ro(Xg. Yor Zg) | -
/-P1(x1, Y1, 29)
-7 Palx3 v, 7))
C(a,b.c) e
X

plane
z
Fig. 7.25
Now P, (x,, ¥, 2,) lies in the view plane,
N, X, + Ny Yo + Ny 2, =dg
where dy = ny Xy + 1N, y,+n;2
“nyfa+(x;-a)u]l+n,[b+(y;-b)u]+n;3[c+(z,-c)u] =d,
u e d
n;(x; —a)+n,(y, -b)+ns3(z; - ¢)

where d =dy,-d,
ie. d = dy—-(ma+nb +ny)

To find the homogeneous coordinate matrix representation we proceed as follows

1. Translate the centre of projection C (a, b, c) so that it lies at the origin. Hence
Ri(xo—a, yy— b, z; - ¢) becomes the view reference point of the translated plane.
The normal vector remains the same.

2. Project onto the translated plane using origin as centre of projection (Refer
problem 7.2)

3. Translate back to the original position.
PerN’ Ru: C = T - PerN’ R() T -1

where Rj, is used as reference point in constructing projection Pery g,
+ B0
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(1 0 0 O0][d 0 0 n,|f1 0O 01
PerNRC=0 1 0 010 d 0 ny|l0 1T 0 0
e 0 0 1 0j{0 0 d ny3{|0O 0 10
-a b — 1fl0 0 0 0“abc1J

'd +an, bn, cn, n, |

| an,  d+bn, cn, n, i

- an, bn, d+cny; ny

| —ad, -bd, -cdy,  -d;

This is the general perspective transformation onto a plane with the reference point
Roy(Xy, Yo Zy), normal vector N and centre of projection C(a, b, c).
Ex.7.5:  Find the transformation for
a) Cavalier projection with 6 = 45°
b) Cabinet projection with 8 = 30°

Sol. : a) A cavalier projection is an oblique projection where there is no
foreshortening of lines perpendicular to the xy plane.
N f=1
and 6 = 45° ... given
(1 0 00
|8 100
ary =
— — 0 0
V2 V2
0 0 01

This is the cavalier projection transformation for 6 = 45°.

b) A cabinet projection is an oblique projection with f = 1. For 6 = 30°

we have,
1 0 0O
P 0 1 0O
arv =1V 1 5
4 4
0 0 01

This is the cabinet projection transformation for 6 = 30°.

¢) Now to draw the projections, we first represent the vertices of the unit cube by a
matrix whose rows are homogeneous coordinates of the vertices
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‘A7 [0 0 01
B, 100 1
C, 1101
D, 0101
V = =
E, 0111
F 00 11
G, 1011
H,| |11 1 1]

To draw the cavalier projection, we find the image coordinates by- applying the
transformation matrix Par,, to the coordinate matrix V.

(A, ]
B,
<,
P2y _ V - Par,

E,
l::2
G,
RetW

T0 0 0 1]

1 0 0 1

1 1 0 1

0 1 0 1

1YYz o1+1V2 0 1

1/v2 12 0 1

1+1/42 142 0 1

_1+1/«/§ 1+1/¥2 0 1]

Hence the image coordinates are

A, = (0,0,0) E,=(1/42,1+1/42,0)

B, = (1,0,0) F,=(1/~2,1/42,0)
(1,1,0)  G,=(1+1/42,1/42,0)
©,1,0) H,=(@1+1/v2,1+1/42,0)

To draw the cabinet projection, we find the image coordinates by applying the
transformation matrix Pary to the coordinate matrix V.

=Ke
[
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= V- Par,

0
0
1
0 1
J3/4 1 +1/4
J3/4 1/4
1+43/4  1/4
1+4/3/4 1+1/4

- = O

e ped et eed = e

Hence the image coordinates are

A, = (0,0,0) E,=(/3/4,1+ 1/4,0)
B, = (1,0,0) F,=(~3/4,1/4,0)

C, = (1,1,0)  G,=(1++/3/4,1/4, 0)
D, = (0,1,0) H,= (1++/3/4,1+1/4,0)

Review Questions

1. Explain the 3D viewing process.

2. Explain various 3D viewing parameters.

3. Derive the 3D transformation matrix to transform world coordinates to viewing coordinates.
4. Write a short note on parallel projection.

5. Write a short note on perspective projection.

6. Explain various types of parallel projections.

7. Explain various types of perspective projections.

8. Derive the transformation matrix for general parallel projection.
9. Derive the transformation matrix for perspective projection.

10. What is the necessity of 3D clipping algorithm ?

11. Explain midpoint subdivision algorithm for 3D clipping.
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University Questions

N

)

0.

=

9

10.

11.
12.

16.

- Give a mathematical description of the parspective projection. (Dec-96)

. Consider a cube of side 5 units placed such that the co-ordinate axes s, y and z are along the

cube edges and the origin is at one corner of the cube. Assume that the centre of projection
(COP) is at (0, 0 - d) and the view planc is the x y plane. Draw the projected image using
purspective transformations ford =5and d - 25. (Dec-96)

- Write a detailed note on perspective projections (May-97)

. With suitable example: and appropriate mathematical models, explain various perspective

rrojections. {ec-97, May-2000, Dec-2000)

. Consider a cube of side 10 units placed such that the co-ordinate axes x, v, and 2 are | ara:del

along the cube edges and the origin is at the centre of the cube.
Assume vt the centre of projection (COP) is at (O, 0,- d) and the view plane is in the x-y

planc. Evaluate and draw the projected image using perspective transformation for d = 10
and d = 30. (Dec-97)

Differentiate between parallel and - erspective projection. Generate a homogeneous matrix
representation for oblique projection of co-ordinate pusition (x, y, z) to position (x,, y,) on the
view plane. (May-98)

. Write a detailed note on three dimensional clipping w.r.t. view volumes.

(May-98, May-2000)

. What are different types of projection ? Derive an matrix representation for perspective

transformation ? What are different perspective anomalies ? (Dec-98)

. Foran standard perspective projection with COP at (0, 0, - d), what is the projected image of -

1) A point in the plane z =~ d

ii) The line segment joining P; (-1, 1, - 2d) to P»(2, - 2, 0) (Dec-98)
How normalised view volume is converted into regular | :ped form ? What advantage we will
have, if the conversion takes place before clipping ? (Dec-98)
3-dimensional view port ? How line clipping is done against it ? (Dec-98)

At irihedron of size 10 units is placed on xy plane with one edge along X-axis (+ ve) and one
vertex at origin. Assuming the tetrahedron to be opaque evaluate and draw projected image

if centre of projection is (10, 0, 0) (May-99)
. Compare parallel and perspective projections with reference to practical use only. (May-99)
. Identify the building blocks that implement the 3D - viewing as shown below : (Dec-99)
. Compare and contrast parallel and perspective projection technic 1es. (Dec-99)

A tetrahedron of size 10 units is placed on the x-y plane with one ed;re along the x-axis and the
origin at the centre of the object. Assuming the COP at (5, 0, 0), draw the projected image
using perspective projection transformation. (May-2000)

'l
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3D World

—— 1 ; 2
Coordinate

output

2D

Device
coordinates

primitives

Fig. 7.26

17. Consider a cube of side 10 units placed such that the c-ordinate axes s, y and z are along the
cube edges and the origin is at one corner of the cube. Assume that the centre of projection
(COP) is at (0, 0~ d) and the view plane is the x v plane. Draw the projecled image using

perspective transformations ford = 10 and d = 30

(Dec-2000)

18. Identity the building blocks that implement the 3D-viewing as shown below.  (May-2001)

3D World
] 1 2 3

2D

coordinat

Device

coordinates

Fig. 7.27

19. What are different types of projections ? Generate a homogencous matrix representation for
orthogonal projection and oblique’ projection of co-ordinate position P(x, y, z) on to the

xy plane.

(May-2001)

20. Develop the perspective transformation of an object onto the xy plane with center of
projection at cop (100, 100, — 100). What will be the projection of a line segment

A (150, 250, 150) B(250, 350, 100)

(Dec-2001)

21. What do you understand from the terms parallel projection, perspective projection,
orthographic projection, oblique projection, Cavalier projection, cabinet projection,

vanishing point, principal vanishing point ?

22. Define orthographic projection and oblique p.rojection.

(May-2002)

Derive mathematical model and transformation matrix for parallel projection.  (May-2003)

23. Define the following terms :

Vanishing point, World coordinates, View volume, Homogeneous coordinates. (May-2003)

aaa



Hidden Surface Elimination Methods
L B

8.1 Introduction

For generation of realistic graphics displays, we have to identify those parts of a scene
that are visible from a chosen viewing position. There are many algorithms called visible
surface algorithms developed to solve this problem. In early days of computer graphics
visible surface algorithms were called hidden line or hidden surface algorithms.

Inagiven set of 3D objects and viewing specification, we wish to determine which lines
or surfaces of the objects are visible, so that we can display only the visible lines or surfaces.
This process is known as hidden surfaces or hidden line elimination, or visible surface
determination. The hidden line or hidden surface algorithm determines the lines, edges,
surfaces or volumes that are visible or invisible to an observer located at a specific point in
space. These algorithms are broadly classified according to whether they deal with object
definitions directly or with their projected images. These two approaches are called
object-space methods or object precision methods and image-space methods,
respectively.

Object-space Method : Object-space method is implemented in the physical coordinate
system in which objects are described. It compares objects and parts of objects to each other
within the scene definition to determine which surfaces, as a whole, we should label as
visible. Object-space methods are generally used in line-display algorithms.

Image-Space Method : Image space method is implemented in the screen coordinate
system in which the objects are viewed. In an image-space algorithm, visibility is decided
point by point at each pixel position on the view plane. Most hidden line/surface
algorithms use image-space methods.

In this chapter we are going to study various visible surface detection or hidden line
removal algorithms, algorithms for octrees, algorithms for curved surfaces, and
visible-surface ray tracing.

(248)
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8.2 Techniques for Efficient Visible-Surface Algorithms

We have scen that there are two basic approaches used for visible surface detection :
Object precision algorithm and image precision algorithm. In both the algorithms we
require to perform a number of potentially costly operations such as determination of
projections of objects, whether or not they intersect and where they intersect, closest object
in case of intersection and so on. To create and display picturesin minimum time we have to
perform visible surface algorithms more  cfficiently. The techniques to - perform
visible-surface algorithms efficiently are discussed in the following sections.

8.2.1 Coherence

The coherence is defined as the degree to which parts of an environment or its projection
exhibit local similarities. Such as similarities in depth, colour, texture and so on. To make
algorithms more efficient we can exploit these similarities (coherence) when we reuse
calculations made for one part of the environment or a picture for other nearby parts, cither
without changes or with some incremental changes. Let us see different kinds of coherence
we can use in visible surface algorithms.

* Object coherence : If one object is entirely separate from another, comparisons may
need to be done only between the two objects, and not between their components
faces or edges.

* Face coherence : Usually surface propertics vary smoothly across a face. This allows
the computations for one part of face to be used with incremental changes to the other
parts of the face.

* Edge coherence: The visibility of edge may change only when it crosses a visible edge
or penetrates a visible face.

* Implied edge coherence : If one planar face penetrates another their line of
intersection can be determined from two points of intersection.

* Area coherence : A group of adjacent pixel is often belongs to the same visible face.

* Span coherence : It refers to a visibility of face over a span of adjacent pixels ona scan
line. It is special case of area coherence.

* Scanline coherence: The set of visible object spans determined tor one scan line of an
image typically changes very little from the set on the previous line.

* Depth coherence : Adjacent parts of the same surface are typically same or very close
depth. Therefore, once the depth at one point of the surface is determined the depth
of the points on the rest of the surface can often be determined by at the most simple
incremental calculation.

* Frame Coherence : Pictures of the same scene at two successive points in time are
likely to be quite similar, except small changes in objects and view ports. Therefore,
the calculations made for one picture can be reused for the next picture in a sequence.

8.2.2 Perspective Transformation

Visible-surface determination is done in a 3D space prior to the projection into 2D that
destroys the depth information needed for depth comparisons, and depth comparisons are
typically done after the normalizing transformation. Due to this projectors are parallel to the
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Z axis in parallel projections or emanate from the origin in perspective projections. In
parallel projection, when x; = x;and y, = y, we can say that points are on the same projector.
However, in perspective projection we have to perform four divisions : x, / z, =X, / z, and
Y./ 7 =Y / 7 to determine whether the points are on the same projector. These divisions
can be avoided by first transforming a 3D object into the 3D screen-coordinate system, so

that the parallel projection of the transformed object is the same as the perspective projection
of the untransformed object.

8.2.3 Extents and Bounding Volumes

The Fig. 8.1 shows two objects
with their projections and the
rectangular screen extents
surrounding the projections.

It is easier to check the

p overlapping of extents than the

projections, and we can say that

x| when extends are not overlapping

then projections are also not

overlapping. Therefore, extents

Fig. 8.1 must be compared first and then

the projections must be compared

only if the extents are overlapped. This avoids unnecessary comparisons in checking the
overlapping of projections if extents are not overlapped.

Extents can be used to surround the object themselves rather than their projections; in
this case the extents become solid and are commonly known as bounding volumes. In this
case extents can be used to check whether two objects are overlapped or not.

Extents and bounding volumes are used not only to compare two objects or their

projections with each other, but also to determine whether or not a projector intersects an
object.

8.2.4 Back-Face Culling

— When an object is approximated
A B by a solid polyhedron, its polygonal
faces completely enclose its volume.
In such case, if none of the
polyhedron's interior is exposed by
the front clipping plane, then those
polygons whose surface normals
H E point away from the observer lie on a
[~ F part of the polyhedron whose
visibility is completely blocked by
other closer polygons, as shown in
z Fig. 8.2.

Fig.‘8.2 Back face culling
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As shown in the Fig. 8.2, polygons (A, B, D, F) shown in gray are eliminated, v ~ere as
front-facing polygon (C, E, G, H) are retained.

These invisible back facing polygons can be eliminated from further processing. Such a

technique to climinate the back facing polygon from further processing is known as
Back-face Culling.

8.2.5 Spatial Partitioning

In this technique, subdivision rule is applied to break down a large problem into a
number of smaller ones. In this objects and their prejections are assigned to spatically
coherent groups as a preprocessing step. This partit ning speed up the process of
determining which object intersect with a projector. Because now it is necessary to test only
the objects lying within the partitions which intersect with projector.

When' objects are unequally distributed in space the adaptive partitioning is more
suitable. Becausce it allows variable size of cach partition.

8.2.6 Hierarchy

In hierarchical structure different levels are assigned to the object and their is a
parent-child relationship between the objects, as shown in the Fig. 8.3.

ObectA . Covel 1 . In .this str.ucturc, cach

child is considered as a

/\ part of its parent. This

allows to restrict  the

Object B Object C ObjectD ------------: Level 2 number of object
/\ comparisons needed by a

Object E Object F Object H Object | -+~ Level 3| visible-surface algorithm.
Object G If the parent level object is

fail to intersect, the lower

Fig. 8.3 Hierarchical structure of objects level (child) objects

belongs to that parent do not need to be tested for intersection.

8.3 Hidden Line Elimination Algorithms

In this section we see some algorithms for hidden line elimination.
8.3.1 Robert's Algorithm

The earliest visible-line algorithm was developed by Roberts. The primary requirement
of this algorithm is that each edge be part of the face of a convex polyhedron. In the phase of
this algorithm the all edges shared by a pair of polyhedron's back facing polygons are
removed using back-face culling technique. In the next phase, each remaining edge is
compared with each polyhedron that might obscure it. Because the polyhedra are convex,
there is at most one contiguous group of points on any line that is blocked from the observer
by any polyhedron. Thus each polyhedron either obscures the edge totally or causes one or
two pieces of the remain. Then any remaining pieces of the edge are compared with the next
polyhedron.
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8.3.2 Appel's Algorithm

Arthur Appel introduced the quantitative invisibility of a line. He defined the
quantitative invisibility as the number of potentially visible surfaces that lie between the
line segment and the ¢vepoint. When a line passes behind a front facing polygon, its
quantitative invisibility is incremented by 1 and when it passes out from behind that
polygon, its quantitative invisibility is decremented by 1. A line is visible only when its
quantitative invisibility is 0. This is illustrated in Fig. 8.4. Here, line AB is annotated with the
quantitative invisibility of cach of its segments.

Fig. 8.4

Appel defined contour line as an edge shared by a front-facing and a back-facing
polygon, or unshared edge of a front facing polygon that is not part of a closed polyhedron.
An edge shared by two front-facing polygons causes no change in visibility and therefore is
nota contour line. In Fig. 8.4, edges AB, EF, FC, GK and GH are contour lines, whereas edges
ED, DC and Gl are not. As shown in the Fig. 8.4 line AB begins with a quantitative
invisibility of zero, passes behind contour line EF, where the quantitative invisibility
increases to +1, then behind the contour line GH, where it increases to + 2. Passing behind
contour line GK reduces the quantitative invisibility to +1. The line then emerges from
behind contour line MN after which the quantitative invisibility is zero. It then passes
behind contour line OP where the quantitative invisibility increases to +1. When it passes
behind the contour IJ its quantitative invisibility is again zero. Therefore, the portions of line
AB (portions from A to the contour line EF, from contour line MN to OF and from contour
line 1] to B) with a quantitative invisibility of zero are visible.
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8.3.3 Haloed Lines

In many applications the hidden lines are shown as dotted, dashed, lines with lower
intensity or with some other rendering style supported by the display device. But in such
application hidden lines are not totally suppressed. The haloed line algorithm described by
Appel, Rohlf, and Stein can suppress hidden lines. The algorithm surrounds each line on
both sides by a halo that obscures those parts of lines passing behind it. The Fig. 8.5 shows
the haloed line segment. It has a symmetrically placed rectangle of width 2H with
semicircular ends of radius H. If line A in Fig. 8.5 is closer to the viewpoint than line B, then
the segment within the halo, labeiled C, is not drawn.

2H

Fig. 8.5 Haloed line segment

This clears that the algorithm intersects cach line with those passing in front of it, keeps
track of those sections that are obscured by halos, and draws the visible sections of each line
after the intersections have been calculated. If the halos are wider than the spacing between
lines, then an effect similar to conventional hidden-line elimination is achieved.

B _
[ DN = 1N <=

=

Fig. 8.6 Hidden lines elimination by Haloed line algorithm

8.4 Hidden Surface Elimination Algorithms

In this section we see some algorithms for hidden surface elimination.

8.4.1 Painter's Algorithm (Depth Sort Algorithm)

The basic idea of the painter's algorithm developed by Newell and Sancha, is to paint the

polygons into the frame buffer in order of decreasing distance from the viewpoint. This
process involves following basic functions.

1. Sorting of polygons in order of decreasing depth.

2. Resolving any ambiguities this may cause when the polygon's z extents overlap, i.e.,
splitting polygons if necessary.

3. Scan conversion of polygons in order, starting with the polygon of greatest depth.
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The algorithm gets its name from the manner in which an oil painting is created. The
artist begins with the background. He then adds the most distant object and then the nearer
objectand so forth. There is no need to erase portions of background; the artist simply paints
on top of them. The new paint covers the old so that only the newest layer of paint is visible.
This is illustrated in Fig. 8.7.

o| | ©f [md

Fig. 8.7 Painter's algorithm

Using the similar technique, we first sort the polygons according to their distance from
the view point. The intensity values for the farthest polygon are then entered into the frame
buffer. Taking each polygon is succeeding polygon in turn (in decreasing depth order),
polygon intensities are painted on the frame buffer over the intensities of the previously
processed polygons. This process is continued as long as no overlaps occur. If depth overlap
is detected by any point in the sorted list, we have to make some additional comparisons to
determine whether any of the polygon should be reordered. We can check whether any
polygon Q does not obscure polygon P by performing following steps :

1. The z-extents of P and Q do not overlap, i.€. Z( ., < Zp nin (€€ Fig. 8.8 (a) )

2. The y-extents of P and Q do not overlap (see Fig. 8.8 (b))

3. The x-extents of P and Q do not overlap

4. Polygon P lying entirely on the opposite side of Q's plane from the view port. (see
Fig. 8.8 (c))

5. Polygon Q lying entirely on the same side of P's plane as the viewport. (see
Fig. 8.8 (d) ).

6. The projections of the polygons P and Q onto the xy screen do not overlap.

If all these five tests fail, we assume for the moment that P actually obscures Q, and
therefore test whether Q can be scan-converted before P. Here, we have to repeat tests 4 and
5 for Q. If these tests also fail then we can say that there is no order in which P and Q can be
scan converted correctly and we have to split either P or Q into two polygons. The idea
behind the splitting is that the splitted polygons may not obscure other polygon.

Algorithm
1. Sortall polygons in order of decreasing depth.

2. Determine all polygons Q (preceding P) in the polygon list whose z-extents overlap
that of P.

3. Perform test 2 through 6 for each Q
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a) If every Q passes the tests, scan convert the polygon P.

b) If test fails for some Q, swap PP and Q in the list, and make the indication that Qis
swapped. If Q has already been swapped, use the plane containing polygon P to divide
polygon Q into two polygons, Q; and Q,. Replace Q with Q; and Q,. Repeat step 3.

y z Y4 z
P
zeéextent of P j@“ of P
ZPmin—f— e — e 20 YP min
ZQmax -~ YQ max
z exteni Q : Q I y extent of Q
of Q - ZPmin > ZQmax
: memJ =2
L Q' I I P 1 Yamax| Q

VAN S :

Screen display of Q Screen display of P

.(b)

P plane
PI

(c) (d)

Fig. 8.8

8.4.2 Scan Line Algorithm

A scan line method of hidden surface removal is an another approach of image space
method. It is an extension of the scan line algorithm for filling polygon interiors. Here, the
algorithm deals with more than one surfaces. As each scan line is processed, it examines all
polygon surfaces intersecting that line to determine which are visible. It then does the depth
calculation and finds which polygon is nearest to the view plane. Finally, it enters the
intensity value of the nearest polygon at that position into the frame buffer.
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: know that scan line algorithm maintains the active edge list. This active edge list
N ns only edges that cross the current scan line, sorted in order of increasing x. The scan
line method of hidden surface removal also stores a flag for each surface that is set on or off
to indicate whether a position along a scan line is inside or outside of the surface. Scan lines
are processed from left to right. At the leftmost boundary of a surface, the surface flag is
turned ON; and at the rightmost boundary, it is turned OFF.

The Fig. 8.9 illustrates the scan line method for hidden surface removal. As shown in the
Fig. 8.9, the active edge list for scan line 1 contains the information for edges AD, BC, EH and
FG. For the positions along this scan line between edges AD and BC, only the flag for surface
S, is ON. Therefore, no depth calculations are necessary, and intensity information for
surface S, is entered into the frame buffer. Similarly, between edges EH and FG, only the
flag for surface S, is ON and during that portion of scan line the intensity information for
surface S, is entered into the frame buffer.

v : For scan line 2 in the Fig. 8.9, the
active edge list contains edges AD,
EH, BC and FG. Along the scan line 2
from edge AD to edge EH, only the
flag for surface S; is ON. However,
between edges EH and BC, the flags
for both surfaces are ON. In this
portion of scan line 2, the depth
calculations are necessary. Here we
have assumed that the depth of S, is
> X less than the depth of S, and hence
the intensities of surface S, are
loaded into the frame buffer. Then,
for edge BC to edge FG portion of
scan line 2 intensities of surface S, are entered into the frame buffer because during that
portion only flag for S, is ON.

8.4.3 Z-Buffer Algorithm

One of the simplest and commonly used image space approach to eliminate hidden
surfaces is the Z-buffer or depth buffer algorithm. It is developed by Catmull. This
algorithm compares surface depths at each pixel position on the projection plane. The
surface depth is measured from the view plane along the z axis of a viewing system. When
object description is converted to projection coordinates (x, y, z), each pixel position on the
view plane is specified by x and y coordinate, and z value gives the depth information. Thus
object depths can be compared by comparing the z- values.

Fig. 8.9 lllustration of scan line method of hidden
surface removal

The Z-buffer algorithm is usually implemented in the normalized coordinates, so that z
values range from 0 at the back clipping plane to 1 at the front clipping plane. The
implementation requires another buffer memory called Z-buffer along with the frame buffer
memory required for raster display devices. A Z-buffer is used to store depth values for each
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Y, (x, y) position as surfaces are
processed, and the frame buffer stores
the intensity values for each position.
17 *1 Atthebeginning Z-buffer is initialized
to zero, representing the z-value at the
back clipping plane, and the frame
buffer is initialized to the background
colour. Each surface listed in the
display file is then processed, one scan
line at a time, calculating the depth
(z-value) at each (x, y) pixel position.
"The calculated depth  value s
Fig. 8.10 compared to the_ value previously
stored in the Z-buffer at that position.
If the calculated depth values is greater than the value stored in the Z-buffer, the new depth
value is stored, and the surface intensity at that position is determined and placed in the
same xy location in the frame buffer.

For example, in Fig. 8.10 among three surfaces, surface S, has the smallest depth at view
position (x, y) and hence highest z value. So it is visible at that position.
Z-buffer Algorithm
1. Initialize the Z-buffer and frame buffer so that for all buffer positions
Z-buffer (x, y) = 0 and frame-buffer (x, y) = lysckground
2. During scan conversion process, for each position on each polygon surface, compare depth
values to previously stored values in the depth buffer to determine visibility.

Calculate z-value for each (x, y) position on the polygon
If z > Z-buffer (x, y), then set
Z-buffer (x, y) = z, frame-buffer (x, y) = I, /jace (X, y)
3. Stop
Note that, I,k rouna 1S the value for the background intensity, and L. is the projected
intensity value for the surface at pixel position (x, y). After processing of all surfaces, the

Z-buffer contains depth values for the visible surfaces and the frame buffer contains the
corresponding intensity values for those surfaces.

To calculate z-values, the plane equation
Ax+By+Cz+D =0

is used where (x, y, z) is any point on the plane, and the coefficient A, B, C and D are
constants describing the spatial properties of the plane. (Refer Appendix A for details)

Therefore, we can write
, = -Ax-By -D
C

Note, if at (x, y) the above equation evaluates to z,, then at (x + Ax, y) the value of z, is
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Zy = A ( Ax)
C

Only one subtraction is needed to calculate z(x + 1, ¥), given z(x, y), since the quotient
A/C is constant and Ax = 1. A similar incremental calculation can be performed to
determine the first value of z on the next scan line, decrementing by B/C for each Ay.

Advantages

1. 1t is casy to implement.

2. It can be implemented in hardware to overcome the speed problem.

3. Since the algorithm processes objects one at a time, the total number of polygons ina
picture can be arbitrarily large.

Disadvantages

1. It requires an additional buffer and hence the large memory.

2. It is a time consuming process as it requires comparison for cach pixel instead of for
the entire polygon.

8.4.4 Warnock's Algorithm (Area Subdivision Algorithm)

An interesting approach to the hidden-surface problem was developed by Warnock. He
developed area subdivision algorithm which subdivides each area into four equal squares.
At each stage in the recursive-subdivision process, the relationship between projection of
cach polygon and the area of interest is checked for four possible relationships :

1. Surrounding Polygon - One that completely encloses the (shaded) area of
interest (see Fig. 8.11 (a))

2. Overlapping or Intersecting Polygon - One that is partly inside and partly
outside the area (see Fig. 8.11 (b))

3. Inside or Contained Polygon - One that is completely inside the area
(see Fig. 8.11 ().

4. Outside or Disjoint Polygon - One that is completely outside the area
(see Fig. 8.11 (d)).

(a) Surrounding (b) Overlapping (c) Inside or Contained  (d) Outside or Disjoint

Fig. 8.11 Possible relationships with polygon surfaces and the area of interest
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After checking four relationships we can handle cach relationship as follows :

1. 1f all the polygons are disjoint from the area, then the background colour is displayed
in the arca.

2. If there is only one intersecting or only one contained polygon, then the arca is first
filled with the background colour, and then the part of the polygon contained in the
area is filled with colour of polygon.

/
3. If there is a single surrounding polygon, but no intersecting or contained polygons,
then the area is filled with the colour of the surrounding polygon.

4. If there are more than one polygon intersecting, contained in, or surrounding the area
then we have to do some more processing,.

See Fig. 8.12. In Fig. 8.12 (a), the four intersections of surrounding polygon are all closer
to the viewpoint than any of the other intersections. Therefore, the entire area is filled with
the colour of the surrounding polygon.

X X

: * :
*Q ;Comamed polygon \‘-’\lmersectmg
"‘ ; o polygon

H o : Surrounding
o Intersecting ° N polygon
: : polygon —
: ? 'S Area of interest
N moygen™™®
—— polygon
Area of interest
z z
(@) (b)

Fig. 8.12

However, Fig. 8.12 (b) shows that surrounding polygon is not completely in front of the
intersecting polygon. In such case we cannot make any decision and hence Warnock's
algorithm subdivides the area to simplify the problem. This is illustrated in Fig. 8.13. As
shown in the Fig. 8.13 (a) we can not make any decision about which polygon is in front of
the other. But after dividing area of interest polygon 1 is ahead of the polygon 2 in left area
and polygon 2 is ahead of polygon 1 in the right area. Now we can fill these two areas with
corresponding colours of the polygons.

The Warnock's algorithm stops subdivision of area only when the problem is simplified
or when area is only a single pixel.
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Polygon 1

Polygon 2

T

Area of interest

Fig. 8.13
Algorithm

1. Initialize the area to be the whole screen.

2. Create the list of polygons by sorting them with their z-values of vertices. Don't
include disjoint polygons in the list because they are not visible.
Find the relationship of each polygon.
Perform the visibility decision test

a) If all the polygons are disjoint from the area, then fill area with background
colour.

b) If there is only one intersecting or only one contained polygon then first fill entire
area with background colour and then fill the part of the polygon contained in the
area with the colour of polygon.

c) If there is a single surrounding polygon, but no intersecting or contained
polygons, then fill the area with the colour of the surrounding polygon.

d) If surrounding polygon is closer to the viewpoint than all other polygons, so that
all other polygons are hidden by it, fill the area with the colour of the surrounding
polygon.

e) If the area is the pixel (x, y), and neither a,b,c, nor d applies, compute the z

coordinate at pixel (x, y) of all polygons in the list. The pixel is then set to colour of
the polygon which is closer to the viewpoint.

5. If none of the above tests are true then subdivide the area and go to step 2.
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Advantages

1. 1t follows the dividc-andAconqucr strategy, therefore, parallel com puters can be used
to speed up the process.

2. Extra memory buffer is not required.

8.4.5 Back-Face Removal Algorithm

We know that a polygon has two
surfaces, a front and a back, just as a
picce of paper does. We might picture

our polygons with one side painted
@ ﬁ light and the other painted dark. But
the question is "how to find which
surface is light or dark”. When we are
looking at the light surface, the
Fig. 8.14 Drawing directions polygon will appear to be drawn with
counter clockwise pen motions, and
when we are looking at the dark
surtace the polygon will appear to be
drawn with clockwise pen motions,
as shown in the Fig. 8.14.

Let us assume that all solid
objects are to be constructed out of
1 - polygons in such a way that only the
light surfaces are open to the air; the
dark faces meet the material inside
the object. This means that when we
look at an object face from the outside,
it will appear to be drawn
N = (AB.C) ‘ B counterclockwise, as shown in the
-~ Ve—se D | Fig 8.15.

- Fig. 8.15 Exterior surfaces are coloured light
and drawn counter clockwise

If a polygon is visible, the light

surface should face towards us and

- the dark surface should face away

Fig. 8.16 . . . . ‘e

from us. Therefore, if the direction of

the light face is pointing towards the viewer, the face is visible (a front face), otherwise, the
face is hidden (a back face) and should be removed.

The direction of the light face can be identified by examining the result
N.V >0

where

N: Normal vector to the polygon surface with cartesian components
(A, B, Q).
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Vo A vector in the viewing direction from the eye (or "camera”) position
(Refer Fig. 8.16)

We know that, the dot product of two vector gives the product of the lengths of the two
vectors times the cosine of the angle between them. This cosine factor is important to us
because il the vectors are in the same direction (0 20 </ 2), then the cosine is positive and the
overall dot product is positive. However, if the directions are opposite (/2 < 0 < n), then the
cosine and the overall dot product is negative (Refer Fig. 8.17).

N

u
0 \O
\% \%

cos >0 cosh<0

Fig. 8.17 Cosine angles between two vectors

If the dot product is positive, we can say that the polygon faces towards the viewer;
otherwise it faces away and should be removed.

In case, il object description has been converted to projection coordinates and our
viewing dircction is parallel to the viewing 7, axis, then V = (0,0, V,) and

V.-N =V,C

So that we only have to consider the sign of C, the'Z component of the normal vector N.
Now, if the z component is positive, then the polygon faces towards the viewer, if negative,
it faces away.

Review Questions

1. Explain the two approaches used to determine hidden surfaces.
2. Discuss the techniques for efficient visible-surface algorithms.

3. What is coherence ? Discuss various types of colierence that can be used to make visible
surface algorithms more efficient.

4+ Write a short note on

a) Perspective transformation

b) Extents and bounding volumes

¢) Back-face culling
5. Explain the Robert's visible line algorithm.
6. Explain the Appel's visible line algorithm.
7. Explain the Haloed line algorithm.
8. Explain the painter’s algorithm for hidden surface removal.
9. Explain the scanline algorithm for hidden surface removal.
10. Explain the Z-buffer algorithm for hidden surface removal.
11. List the advantages and disadvantages of Z-buffer algorithm.
12. Explain any one area subdivision algorithm for visible surface detection.

13. Describe the back face removal algorithm.
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University Questions

1. What do you understand by hidden line and hidden surface elimination techniques ? Develop
an algorithm for any hidden surface algorithm of your choice. Clearly state its advantages
and drawbacks over others. ) (Dec-96)

2. Devclop an algorithm for removal of hidden surfaces. HHlustratle this on the object shown
below :- (Dec-96, Dec-2000)

Fig. 8.18
Comment on the advantages and disadvantages of vour method with respect to any other
method you have studied.

3. Apply any hidden surface/hidden line algprithm on the above wire-frame model and draw
the resultant, assuming that the view point is at (0, 2h, 0) (May-97, Dec-97)

1. Differentiate between image space and object space. Explain painters algorithm for hidden
surface removal. (May-98)

5. Explain scan-line method for hidden surface removal and explain how it works for figure
shown below : (May-98)

Fig. 8.19
6. Write a detailed note on z-buffer method (May-98)

7. Explain how area subdivision method is used for hidden surface elimination.

(Dec-98, May-2001)

8. Explain a-buffer algorithm, state its advantages over z-buffer algorithm. (Dec-98)

9. Explain z-buffer method. (May-99)
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10. Compare and contrast hidden surface removal algorithms based on object space and Image
space approaches. (Dec-99)

11. Develop anappropriate hidden surface algorithm which is suitable for the above object.
(May-2000)

12. Develop a program for the z-buffer technique. (May-2000)

13. Differentiate between image space and object space methods of hidden surface removal.
Explain 7 buffer method of hidden surface removal with reference to the folowing object.
(Dec-2001)

14. Explain depth buffer method of hidden surface removal in detail. (May-2001)

15. Apply scanline method of hidden surface removal on the following figure and do the

following,. (May-2001)

/ ; /\ o Scanline 1
/ /’// \ o Scanline 2

® Scanline 3

X
Fig. 8.20
1) Give the active edge list for each scanline.
ii) Mention the possible intensities of each scanline.
16. Differentiate between : image-space method and object-space method.  (May-2003)

aaa
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Curves

I

9.1 Introduction

In chapters 2 and 3 we have seen line, cirele and polygon seneration algorithms. In later
chapters, we learned how to represent and manipulate i segraents and polygons. We
have also scen transformations and clipping of them. [ low 2o, many real world objects are

5 _ ]
inherently smooth and involve curves to represent them. Some natural objects are neither
perfectly flat nor smoothly curved but often have rougli, jagged contours.

In this chapter, we see the methods for generating surved Hnes. o the later part of the
chapter we discuss the procedures to draw fractal curves, lines and surlaces.

9.2 Generation of Curves

We can use two approaches to draw curved lines. One approach is 1o use a curve
generation algorithm such as DDA, In this approach a true curve is created. In the second
approach the curve is approximated by anumber of small straight line segments This can be
achieved with the help of interpolation techniques. '

9.2.1 Circular Arc Generation Using DDA Algorithm

Digital differential analyzer algorithm uses the differential equation of the curve. The
differential equations for simple curve such as circle is fairly easy to solve and we have
already discussed it in the chapter 2. Let us see the DDA algorithm for generating circular
arcs. The equation for an arc in the angle parameters can be given as

X = Rcosh + x,
y = Rsinf +y, . (9.1)

where (x,, y,) is the center of curvature, and R is the radius of arc. (see Fig. 9.1)

Ditferentiating equation 9.1 we get

dx =~ Rsind do

dy =R cosd do ...{9.2)
From equation 9.1 we can solve for R cosd and R siny
R as follows.
x=Rcos0+x,
{Xo» Yo) - Rcos®=x-x,and
Fig. 9.1

(265)
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Rsin0 = y-vY, .. (9.3)
Substituting values of R cos 9 and R sin 0 from equation 9.3 in equation 9.2 we get,
dv = —(y-y,dband
dy = (x=x,)d0 ... (9.4)
I'he values of dx and dy indicate the increment in x and y increment, respcctively, to be
added in the current pointon the arc to get the next pointon the arc. Thercfore, we can write
Xy = oxphdx=x -y - y,,) d0
y, = y, rdy =y, ¥ (x5 = X) dO ... (9.5)
The equation 9.5 forms the basis for arc generation algorithm. From cquation 9.5 we can
see that the next pointon the arc is the function of d0 . To have a .s“m()()th curve, the
neighbouring points on the arc should be close to cach other. To achieve this, the value of do
should be small enough not to leave gaps in the arc. Usually, the value of df can be
determined from the following equation.

do = Min (0.01, 1/(32x (|x=x| + ly =yl )))
Algorithm
1. Read the center of a curvature, sav (X, ¥y )

2. Read the arc angle, say 0

3. Read the starting point of the arc, say (X, ¥)
4. Calculate dO

d0 =Min (0.01,1 /7 (3.2x (| x=xy} + 1v-vy 1))
5. Initialize Angle=0

6. While (Angle < 0)
do
[ Plot(x,y)
x=x-(y=-vyy xd0
y=y+ (x-xp)x do
Angle = Angle + d6
}
7. Stop.
Problems in True-Curve Generation Approach

1. To specify a curve, we need more information than just its endpoints.

2. Ttisdifficult to apply transformations. For example, a circle when scaled in only one
direction becomes an ellipse. If our algorithm supports only circular arc generation
then ability to scale pictures is limited.
3. New clipping algorithm is required to clip arcs.

4. The curve generation algorithms for curves other than circular or elliptical such as
airplane wings or cars or human faces, are complex.
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9.2.2 Interpolation

In the Jast section we have seen limitations of true curve generation approach.
Furthermore in practice we have to deal with some complex curves for which no direct
mathematical function is available. Such curves can be drawn using approximation
methods. If we have set of sample points which lic on the required curve, then we can draw
the required curve by filling portions of the curve with the picces of known curves which
pass through nearby sample points. The gap between the sample points can be filled by
finding the co-ordinates of the points along the known approximating curve and connecting
these points with line segments as shown in the Fig. 9.2,

Unknown curve

Known sample points

o

o o Calculate more points
o from the known curve

(o]
o Fit a region with
a known curve
(o]

o
fw‘ o ° o Actually draw straight

o line segments connecting
points

Fig. 9.2 The interpolation process
The main task in this process is to find the suitable mathematical expression for the
known curve. There are polynomial, trigonometric, exponential and other classes of
functions that can be used to approximate the curve. Usually polynomial functions in the
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parametric form are preferred. The polynomial functions in the parametric form can be

given as

x = f(u)
y = flu)
2 = f(u)

We can realise from above equations that the difference between 2 and 3 dimensions is
just the addition of the third equation for . Furthermore the parametric form treats all the
three dimensions equally and allows multiple values (several values of y or z for a given x
value). Due to these multiple values curves can double back or even cross themselves, as
shown in Fig. 9.3.

Fig. 9.3 Representation of curves with double back or crossing themselves

We have seen that, we have to draw the curve by determining the intermediate points
between the known sample points. This can be achieved using interpolation techniques.
Let's see the interpolation process.

Suppose we want a polynomial curve that will pass through n sample points.

(X1 Y1 Z)s (Xas Yo Z2)s ooor (X Y 20)
We will construct the function as the sum of terms, one term for each sample point.

These functions can be given as
n

f(u) = D x B

i=l

n

Z y; Bi(w)

i1

]

fy(u)

n

f(u) = Z z; Bi(u)

i=l
The function B, (u) is called 'blending function'. For each value of parameter u, the

blending function determines how much the i" sample point affects the position of the
g ple p P
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curve. In other words we can say that each sample points tries to pull the curve in its
direction and the function Bi(u) gives the strength of the pull. If for some value of u, B(u)=1
for unique value of i (i.c. Bi(u) = 0 for other values of i) then i sample point has complete
control of the curve and the curve will pass through i sample point. For different value of u,
some other sample point may have complete control of the curve. In such case the curve will
pass through that point as well. In general, the blending functions give control of the curve
to cach of the sample points in turn for different values of u. Let's assume that the first

sample point (x,, y, z,) has complele control when u = — 1, the second when u = 0, the third
whenu =1, and so on. i.e.

when u=-I=Bu=1land0foru=0,1,2,...,n-2

when u =

0 =B(uy=TlandOforu=-1,1, ..., n~2

. when u=Mn-2)=Bu=Tand0foru=-1,0,...,(n-1)
TogetB(u=Tatu=-TandOforu=0,1,2,...,n-2, the expression for B, (u) can be
given as
u(u-T)w-2)... lu-n-2)]
-1)(-2)....(1-n)

where denominator term is a constant used. In general form i blending function
which is 1 at u =i -2 and 0 for other integers can be given as :

B.(u) = W+ -1 [u-(i-3)Jfu-G-1]... [u-(-2)]
' (i-1)@E-2)({-3).... (1) (-1)...(i-n)
The approximation of the curve using above expression is called Lagrange

interpolation. From the above expression blending functions for four sample points can be
given as

Bi(u) =

u(u-1)(u-2)

Bi(u) =

(-1) (-2) (-3)
B = MrDU-Du-2)
' 1(-1) (-2)
Byu) = (tDufu-2)
~ 2) ) (-1)
B,(v) = w

(3) (2) (1)

Using above blending functions, the expression for the curve passing through sampling
points can be realised as follows :

X = Xy By(u) + x, By(u) + x4 B5(u) + x; B,(u)
Y = y1By(u) +y, By(u) + y3 By(u) + y, By(u)
z = 2y By(u) + z, By(u) + 24 By(u) + z, B,(u)
Itis possible to get intermediate points between two sampling points by taking values of
u between the values of u related to the two sample points under consideration. For
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example, we can find the intermediate points between second and third sample points for
which values of uare 0 and 1, respectively; by taking values of u between 0 and 1. This is
shownn Fig. 9.4.

u=0 u=13

Fig. 9.4 Determining intermediate points
for approximation of curve

The subsequent intermediate points can be obtained by repeating the same procedure.
Finally the points obtained by this procedure arce joined by small straight line segments to
get the approximated curve.

Initially, sample points (1, 2, 3, 4) are considered and intermediate points between (2, 3)
are obtained. Then sample pointat one end is discarded and sample point at the other end is
added to get new sample points (2, 3, 4, 5). Now the curve between sample points (3, 4) is
approximated. The subsequent intermediate points can be obtained by repeating the same
procedure. The initial and final portions of the curve require special treatment. For the first
four points (1, 2, 3, 4) we have to draw region between points (1, 2) with u values between - 1
and 0.

Similarly the blending function for very last step of the curve should be evaluated with
u values between 1 and 2.

Interpolating Algorithm

1. Get the sample points.

2. Get intermediate values of u to determine intermediate points.

3. Calculate blending function values for middle section of the curve.

4. Calculate blending function values for first section of the curve.

5. Calculate blending function values for the last section of the curve.

6. Multiply the sample points by blending functions to give points on approximation curve.

7. Connect the neighbouring points using straight line segments

Stop.

9.3 Spline Representation

To produce a smooth curve through a designated set of points, a flexible strip called
spline is used. Such a spline curve can be mathematically described with a piecewise cubic
polynomial function whose first and second derivatives are continuous across the various
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curve sections. We can specify a spline curve by giving a set of coordinate positions, called
control points, which indicates the general shape of the curve. When polynomial sections
are fitted so that the curve passes through all.control points, as shown in the Fig. 9.5 (a), the
resulting curve is said to interpolate the set of control points. On the other hand, when the
polynomials are fitted to the path which is not necessarily passing through all control points,
the resulting curve is said to approximate the set of control points. This is illustrated in the

Fig. 9.5 (b).

(a) Interpolation spline (b) Approximation spline

Fig. 9.5
9.3.1 Geometric and Parametric Continuity

"To ensure a smooth transition from one section of a piecewise parametric curve to the
next, we can impose various continuity conditions at the connection points. We sce
parametric continuity and geometric continuity conditions.

In geometric continuity we require parametric derivatives of two sections to be
proportional to each other at their common boundary instead of equal to each other.
Parametric continuity is set by matching the parametric derivatives of adjoining two curve
sections at their common boundary. In zero order parametric continuity, given as C, it
means simply the curve meet and same is for zero order geometric continuity. In first order
parametric continuity called as C' means that first parametric derivatives of the coordinate
functions for two successive curve sections are equal at the joining point and geometric first
order continuity means the parametric first derivative are proportional at the intersection of
two successive sections. Second order parametric continuity or C* continuity means that
both the first and second parametric derivatives of the two curve sections are same at the
intersection and for second order geometric continuity or C* continuity means that both the
first and second parametric derivatives of the two curve sections are proportional at their
boundary. Under C? continuity curvature of the two curve sections match at the joining
positions.

Two curves

r(t) = (=2t 1)

nt) = +1,t+1)
C' and G! are continuous at r(1) = n (0)
Derivative t) = 2t-2,1

r(l) = 2-2,1

=01
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Derivative n(t) = 2,1
n(0) = 0,1
r(1) = n(0), two curves are continuous.

Ex.9.1:  Show that two curves n(t) = (€ + 2t -2, Fyand r(t) = (F + 2t + 1, £ + 1) are both Cand G"
continuous where they join at 1(1) = r(0). Do they meet C'and G! conlinuity.
Sol.: nt) = (& + 2t - 2, t)
rt) = (B+2t+1,t+ 1)

Zero order parametric continuity, described as C continuity, means simply that the
curves meet. That is, the values of x, y and z evaluated at u, for the first curve section arc
equal, respectively, to the values of x, y and z evaluated at u, for the next curve section. The
zero-order geometric continuity described as G continuity, is the same as zero-order
parametric continuity. !

We have, ‘

n(i) = (17+2-2,1%
= (1, 1)

r0) = (0°+0+1,0+1)
= (1, 1)

Therefore, we can say that both curves are C” and G" continuous at n(1) and r(0). To
check for C'and G continuity we have to take first derivative of both the curves
Derivative n(t) (2t + 2, 2t)
Derivative r(t) = (2t+2,1)

n(1l) = 2+2,2)
= (4,2)
r(0) = (2, 1)

Since n(1) = r(0), the two curves are not C' and G' continuous at n(1) and r(0).

9.3.2 Spline Specifications
There are three basic ways of specifying spline curve :
* We can state the set of boundary conditions that are imposed on the spline
* We can state the matrix that characteristics the spline or
* We can state the set of blending functions that calculate the positions along the curve
path by specifying combination of geometric constraints on the curve.

Why to use cubic polynomials ?

Polylines and polygons are first-degree, piecewise linear approximation to curves and
surfaces, respectively. But this lower degree polynomials give too little flexibility in
controlling the shape of the curve. The higher-degree polynomials give reasonable design
flexibility, but introduce unwanted wiggles and also require more computation. For this
reason the third-degree polynomials are most often used for representation of curves. These
polynomials are commonly known as cubic polynomials.
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We candescribe the parametric cubic polynomial that is to be fitted between cach pair of
control points with the following set of equations :
x(u) = axu’+bx u” +cxu + dx
y(u) = ay u’ + by u? + cy u+dy
z(u) = az’ +bz v+ czu + dv (O<u<t) ... (9.6)
For cach of these three equations, we need to determine the values of the four
cocfficients a, b, c and d in the polynomial representation for cach of the n curve sections
between the n+ 1 control points. We do this by setting enough boundary conditions at the
joints between curve sections so that we can obtain numerical values for all the cocfficient.
Let us see the common methods for setting the boundary conditions for cubic interpolation
splines.

9.4 Bezier Curves

Bezier curve is an another approach for the construction of the curve. A Bezier curve is
determined by a defining polygon. Bezier curves have a number of properties that make
them highly useful and convenient for curve and surface design. They are also casy to
implement. Therefore Bezier curves are widely available in various CAD systems and in
general graphic packages. In this section we will discuss the cubic Bezier curve. The reason
tor choosing cubic Bezier curve is that they provide reasonable design flexibility and also
avoid the large number of calculations.

Properties of Bezier curve

1. The basis functions are real.
2. Bezier curve always passes through the first and last control points i.c. curve has
same end points as the guiding polygon.

3. The degree of the polynomial defining the curve segment is one less than the
number of defining polygon point. Therefore, for 4 control points, the degree of the
polynomial is three, i.e. cubic polynomial.

4. The curve generally follows the shape of the defining polygon.

The direction of the tangent vector at the end points is the same as that of the vector
determined by first and last segments.

The curve lies entirely within the convex hull formed by four control points.

The convex hull property for a Bezier curve ensures that the polynomial smoothly
follows the control points.

8. The curve exhibits the variation diminishing property. This means that the curve
does not oscillate about any straight line more often than the defining polygon.

9. The curve is invariant under an affine transformation.

In cubic Bezier curve four control points are used to specify complete curve. Unlike the
B-spline curve, we do not add intermediate points and smoothly extend Bezier curve, but
we pick four more points and construct a second curve which can be attached to the first.
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Fig. 9.6 A cubic Bezier spline

The second curve can be attached to
the first curve smoothly by sclecting
appropriate control points.

Fig. 9.6 shows the Bezier curve
and its four control points. As
shown in the Fig. 9.6, Bezier curve
begins at the first control point and
ends at the fourth control point. This
means that if we want to connect
two Bezier curves, we have to make
the first control point of the second
Bezier curve match the last control
point of the first curve. We can also
observe that at the startof the curve,
the curve is tangent to the line
connecting first and second control
points. Similarly at the end of curve,
the curve is tangent to the line
connecting the third and fourth
control point. This means that, to
join two Bezier curves smoothly we
have to place the third and the
fourth control points of the first

curve on the same line specified by the first and the second control points of the second

curve,

The Bezier matrix for periodic cubic polynomial is

-1 3 -3
3 -6 3
My =
-3 3
11 0 O
Pu) = U-M;-G;
P,
P
where Gy =2
Py
P

and the product P(u) = UM;.G; is

1

0
0
0

P(u) = 1-u)’P, +3u(l-w?P, +3u’*(1-uw)P; +u’P,
Ex. 9.2 Construct the Bezier curve of order 3 and with 4 polygon vertices A(1, 1), B(2, 3), C(4, 3)

and D(6, 4).
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Sol. : The equation for the Bezier curve is bivgn as
Py = (1-u)? P +3u(l-u)? Py +3u” (1 w) P+ u’l
forO<u<l
where P(u) is the point on the curve P, Py, 15, Py
Let us take u =0, l— 13
4’2

PO) = I =(I, 1)

()= (-4 n 3 43 )

27 27 1
= LA+ 2R3 4,3) + - (6,4
PrACRANICA 64( )5 oY
2 2 C
= {fzx'l + :-ZK2I —)x4+-l-x6, 27y 1+ %3 +-=x3 !——--—X4J
64 64 64 64 64 64 64 64

~ {m '139J
64 " 64
= (1.9218,2.1718)

3

el RIS ’]
L S (P I RS T I ERN (L N PR l] ;
>) _(l 2) l'”zl\l 2) & +3(_2J (l 2Jl’+(2. g
s 3(2,3)+~-(4 3+ «(6,4)

1

w

x'7+—x-l+l><() lyl+§x3+zx’%+ly4]
8 8 8 8 8

S O"IJ.)

oc|'° oal—'

s
5

23
8
= (3.125, 2.875)

3 2 2 3
P(EJ = (1 —3) P +33[1 —éj P, +3(3j (1—§j1)3 +(§j P,
4 4 4\ 4 4 4 4

1,90 . 2 27
64] 642 643 64 *

= ——(1 1)+ (2 3)+ (4,3) ——(6,4)

= |il><1+i 2+£ 4+zx6, —1—x1+ix3+£x3+gzx4}
64 64 64 64 64 64 64 64
64 64

= (4.5156, 3.375)
P(1) = 13 =(6,4)
The Fig. 9.7 shows the calculated points of the Bezier curve and curve passing through it
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(4.5156, 3.375)

(6.4)

(3.125, 2.875)

flo) 1" RSN I e

Fig. 9.7 Plotted Bezier curved

Another approach to construct the Bezier curve is called midpoint approach. In this
approach the Bezier curve can be constructed simply by taking midpoints. In midpoint
approach midpoints of the lines connecting four control points (A, B, C, D) are determined

D

CD

BCAABCD

AB
A

Fig. 9.8 Subdivision of a Bezier spline

(AB, BC, CD). These midpoints are
connected by line segments and their
midpoints ABC and BCD are determined.
Finally these two midpoints are connected
by line segments and its midpoint ABCD
is determined. This is illustrated in
Fig.9.8.

The point ABCD on the Bezier curve
divides the original curve into two
sections. This makes the points A, AB,
ABC and ABCD are the control points for
the first section and the points ABCD,
BCD, CD and D are the control points for
the second section. By considering two
sections separately we can get two more
sections for each separate section i.e. the
original Bezier curve gets divided into
four different curves. This process can be
repeated to split the curve into smaller
sections until we have sections so short
that they can be replaced by straight lines
or even until the sections are not bigger
than individual pixels.
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Algorithm

1.
2.

3
4.
5
6

Get four control points say A (x,, y,), B (g, ¥8). C (X yo), D (X, y1))

Divide the curve represented by points A, B, C and D in two sections

Xap={Xxp +xg) /2

Yag=(ya+ys) /2

xpc = (xg + x¢) / 2

Yec=(ys +yc) /2

Xcp = (Xe +xp) / 2

Yep =(yc+Yyp) /2

Xapc = (Xap + Xpc) / 2

Yasc = (Yas * Ysc) / 2

xgcp = (Xpc + Xcp) / 2

Yeco = (Ysc + Yep) / 2

XaBcD = (Xac + Xpep) / 2

Yascp = (Yasc * Ypep) / 2

Repeat the step 2 for section A, AB, ABC and ABCD and section ABCD, BCD, CD and D
Repeat step 3 until we have sections so short that they can be replaced by straight lines.
Replace small sections by straight lines.
Stop

'C' code for Drawing Bezier Curve

(Softcopy of this program is available at vtubooks.com)

#include <stdio.h>
#include <graphics.h>
#include <conio.h>
int gd,gm, maxx,maxy;

float xxx{4](2]:

/* Function to draw line from relative position

specified in array XxXx--—---—------——-——-——-——- */

void linel (float x2, float y2)

{

line (xxx[01([0],xxx[0][1],x2,y2);
xxx[0] [0}1=x2;

xxx[{0}[1]=y2;

}
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/* Bezier function
____________________ * ,/
pezier (fioat xb, float yb, float xc,float yc, float xd, float yd,int n)

{

float xab, yab, xbc, ybe, xcd, ycd;

float xabc, yabc, xbed, ybed;

float xabcd, yabcd;

it (n==0)

!

linel (xb, vb);

linel(xc,ya);

linel (xd, yd);

else

xab = (xxx[0)[0]+xb)/2;

vab = (xxx[07{11+yb)/2;
xbc = (xb+xC)/2;
ybc = (yb+vc)/2;

xcd = (xc+xd)/2:
yed = (yc+yd)/2;

"

xabc

yabc
xbcd

It

ybcd =

xabcd =
yabed =

n=n-1;

(xab+xbc) /2;
(yab+ybc) /2;
(xbct+xcd) /2;
(ybc+yed) /2;
(xabc+xbed) /2;
(yabc+ybed) /2;

bezier (xab, yab, xabc, yabc, xabed, yabed, n) ;

bezier (xbcd, ybed, xcd, yed, xd, yd, n) ;

/* Function to initialise graphics

void igraph ()
{

detectgraph (&gd, &gm) ;
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1f (gd<0)

{

puts ("CANNOT DETECT A GRAPHICS CARD");

ex1t(1l);

}
initgraph (&qgd, &ym, "£:\\tc");
}

main ()
{
int 1i;
’float templ, temp?;
igraph();

/* Read two ¢nd points and twe control points of the curve

for (i=0;1<4;it+)
{

3

printf ("Enter (x,y) coordinates of pointid ", 1+1);
scanf (", %f", &templ, &temp2) ;

xxx{i] 101 = templ;

xxx[1][1] = temp2;

}

bezier (xxx[11[0],xxx[11[1],xxx[2]){0],xxx[2)[1],xxx[3][0],xxx
(31(11,8);

getch ()
closegraph() ;
1

9.5 B-Spline Curves

We have seen that, a curve generated by using the vertices of a defining polygon is
dependent on some interpolation or approximation scheme to establish the relationship
between the curve and the polygon. This scheme is provided by the choice of basis function.
The Bezier curve produced by the Bernstein basis function has a limited flexibility. First the
number of specified polygon vertices fixes the order of the resulting polynomial which
defines the curve. For example, polygon with four vertices results a cubic polynomial curve.
The only way to reduce the degree of the curve is to reduce the number of vertices, and
conversely the only way to increase the degree of the curve is to increase the number of
vertices. The second limiting characteristics is that the value of the blending function is
nonzero for all parameter values over the entire curve. Due to this change in one vertex,
changes the entire curve and this eliminates the ability to produce a local change with in a
curve.
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There is another basis function, called the B-spline basis, which contains the Bernstein
basis as a special case. The B-spline basis is nonglobal. It is nonglobal because each vertex B;
is associated with a unique basis function. Thus, each vertex affects the shape of the curve
only over a range of parameter values where its associated basis function is nonzero. The
B-splinc basis also allows the order of the basis function and hence the degree of the
resulting curve is independent on the number of vertices. It is possible to change the degree
of the resulting curve without changing the number of vertices of the defining polygon.

If P(u) be the position vectors along the curve as a function of the parameter u, a B-spline
curve is given by
n+ 1
Pu) = Y BN, (Wup Su<uy,, 2<ksn+l ..(97)
=1

where the B; are the position vectors of the n + 1 defining polygon vertices and the N;
are the normalized B-spline basis functions. For the i normalized B-spline basis function of
order k, the basis function N; , (u) are defined as

1 if x; Su<x;
0 Otherwise

(u-x)N; () +(xi+k “—uN;, g, 1 (W)

Ni,](u) =

and N; (u)

.. (9.8)

Xisvk -1 "X Xi+k ~Xi41

The values of x; are the elements of a knot vector satisfying the relation x; < x; ;. The
parameter u varies from u;, to u,, along the curve P(u). The choice of knot vector has a
significant influence on the B-spline basis functions N; | (u) and hence on the resulting
B-spline curve. There are three types of knot vector : uniform, open uniform and
nonuniform.

In a uniform knot vector, individual knot values are evenly spaced. For example,
[01234]

For a given order k, uniform knot vectors give periodic uniform basis functions for
which

N; w(@) = N; ((u-1)=Nj; (u+1)
An open uniform knot vector has multiplicity of knot values at the ends equal to the
order k of the B-spline basis function. Internal knot values are evenly spaced. Examples are,
k =2[001233]
k =3{00012333]
k =4[000012222]
Generally, an open uniform knot vector is given by,
x; =0 1<i<k
, = 1-k k+1<i<n+1
X; =n-k+2 n+2<is<n+k+1 ..(9.9)

X
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The curves resulted by the use of open uniform basis function are nearly like Bezier
curves. In fact, when the number of defining polygon vertices is equal to the order of the

B-spline basis and an open uniform knot vector is used, the B-spline basis reduces to the
Bernstein basis. Hence, the resulting B-spline curve is a Bezier curve.

Ex.9.3  Calculate the four third-order basis function N i,3(), 1=1,2,3, 4withan open uniform
knot vector.

Sol.: We have to calculate four basis functions, therefore n = (4 - 1) = 3 and it is of order
three, therefore k = 3. From equation 9.9 the open uniform knot vector is given as

[X] =[0001222]

Now, from equation 9.8, the basis functions for various parameters are as follows :

0<u<1
N3,](u)=1; Ni'](u)=0, ]¢3
Nzlz(u)Zl—u, N3,2(u)=u, Nilz(u)=0 17‘-'2,3
N; 3w =(1-u)?; N2,3(U):U(1—U)+(2_u)u

ul
N3,3(U)=7? N; 3(u)=0; 1i=1,2,3
1<u<?2
Ny (uw=1; N; j(w=0, iz4
Nj; 5 (u)=(2-4); Ny ,(W=(@u-1); N;,(u)=0,i23,4
N2,3(u)=(2 u) ; N3,3(t)=u+(2—u) (u-1);

2 2

N4,3(U)=(U—1)2; N; 3(u)=0; 122, 3,4

Ex. 9.4 Construct the B-spline curve of order 4 and with 4 polygon vertices A(1, 1), B(2, 3)
C(4, 3) and D6, 2).

Sol.: Heren =3 and k = 4 from equation 9.9 we have open uniform knot vector as

x=[00001111]and from equation 9.8 we have basis functions are

0<ux1

N, (u)=1; N; ;(u)=0, i#4

N3, (u)=(1-u); Ny, (w=u, N;,u)=0, i=3,4
N, 5(u)=(1-u)?; N; 3(u)=24(1-u);

N, ;) =u?; N; 5(u)=0; i=%2 3,4

N, ;) =(1-1t3; Ny, () =u(l - u)? +2u(l-u)? =3u(l -u)?;

N3,4(u)=2u2(1—u)+(1—u)u2 =3u2(1—u);N4'4(u)= ul
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Using equation 1 the parametric B-spline is

Let us take u

- P(0)

)

Ve N

=o,l,
4

P(u) = AN, 4(u)+BN2 4(u)+CN34(u)+DN44(u)
Pu) = (1-u) A+3u(1—u) B +3u? (1—u)C+u D

,3,1
4

N =
=

3 2 3

1- j (1—1)B+3(l)(1—l)C+rl)D
4 4 4) 4

- (Z A G PG laP
64 64 64 64
27 9 1
= (1,H+ 2,3)+ —(4,3) +—(6,2
64(>(>64<><>}
2 C
[f—xl+—zzx2+ix4+]—x(),“7 1+zx3+lx3+L><2]
64 64 64 64 64 64 64 64
64 " 64
[1.9218, 2.14]

Y restf- o2 3o o

i 3 3 1
- l 1 - ’ - ’ - 12
L8( / )+8(2 3)+8(4 3)+8(6 )}

lx1+§x2+§x4+lx6,lx]+§x3+§x3+lx2:|
8 8 8 8 8 8 8 8
[25 21}

s’ 8

[3.125, 2.625]

3] ne o2 o 2] )

LA+iB+ZC 27D

64 64 64 64

1 9 27

—1, H+—= 2,3+——4,3 +=(6,2

64( ) 64( ) 4( ) 64( ) |
:{lxl+ix2+gz 4+z 6, — 1 x1+ix3+—2z 3+Z 2]

64 64 64 64 64 64 4 64

64 " 64
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[4.5156, 2.5468]
P(1) = D=[6,2]

The Fig. 9.9 shows the calculated points of the B-spline curve and curve passing through

It

it.

51
4l
B C
3p----—----- H-mmmmmmm— - x
_________________ =t
] 1 :
2§ S R *D
1 | 1 !
1 ) ! i :
I ) : : )
A ' ! i
14=---- ! Lo |
: : : : 1 :
I ! ! ' : 1
; ; H - ; ;
0 1 2 3 4 5 6 7

Fig. 9.9 Plotted B-spline curve
Properties of B-spline curve

* The sum of the B-spline basis functions for any parameter value u is 1.
n_+ 1

ie. Z N; (w=1

i1
* Each basis function is positive or zero for all parameter values, i.e., N; 20

* Except for k = 1 each basis function has precisely one maximum value.

* The maximum order of the curve is equal to the number of vertices of defining
polygon.

* The degree of B-spline polynomial is independent on the number of vertices of
defining polygon (with certain limitations).

* B-spline allows local control over the curve surface because each vertex affects the

shape of a curve only over a range of parameter values where its associated basis
function is nonzero.

* The curve exhibits the variation diminishing property. Thus the curve does not
oscillate about any straight line move often than its defining polygon.

* The curve generally follows the shape of defining polygon.

* Any affine transformation can be applied to the curve by applying it to the vertices of
defining polygon.

* The curve line within the convex hull of its defining polygon.
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9.6 Parametric Bicubic Surfaces

Parametric bicubic surfaces are a generalization of parametric cubic curves. In
section 9.3 we have seen the general form of parametric cubic curve

P(u) = U-M-G

If we now allow the points in G to vary in 3D along some path that is parameterized on ,
we have

Gy (1)
G, (1)
Gs(b)
G4

P(u,t) = U-M-G(t) =U-M- ...(9.10)

Now, different values of t between 0 to 1 we get different curves. For slight different
values of t we get slightly different curves. The set of all such curves arbitrarily close to each
other for values of t between 0 and 1 defines a surface. If the G;(t) are themselves cubics, the
surface is said to be a parametric bicubic surface, and G(t) can be represented as

G(t) = U-M-G, ‘ .. (9.11)
where G = g1 8 8 gul’ and
g, is the first element of the geometry vector for curve G; (t).
The transpose of equation (9.11) can be given as
G = GT-M"-U" - (A-B-Q)f =C".BT- AT

Substituting the above result in equation (9.10)
We have

P(ut)

It

U-M.GF-M".U"
U-M-[g: 82 85 g4l MU'
g 812 813 Bu

U-M- gun 8n &1 Bu | T .yl ...(9.12)
83 832 83 Bxu
ga 842 843 Bu

U-M-G -M'-UT where 0<u,t<1 ... (9.13)

It

In terms of x, y, z separately the above equation can be written as
x(wt) = U-M-G, -M"-U"
y(ut) = U-M-G, -M uT
z(ut) = UM-G, M .U" ... (9.14)
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9.6.1 Hermite Surfaces

The parametric bicubic equation for Hermite surface can be given as

P (1)
P(u,t) = U-M,;-Gy(t) =U-My- [1;;31(2) ... (9.15)
DP, (t)
EstH
where Pi(t) = U-M,,|8?
g13
1814 ]
(821_
Py(t) = U-M,, |82
823
1824 |
EXR
DP(t) = U-M- B2z
833
&34
(841 |
DP,(t) = U-M,, 8%
‘ g3
1844
The above four equations can be rewritten together as
[Py(t) Py(t) DP,(t) DP,(t)]=U-M,-G}, ... (9.16)
where,
(81 812 813 8un
G, = 821 8n 82 8Bn
£31 832 83 8Bxu
| 841 B2 B4z Bas
Taking transpose of both sides we have
Py (t) gu 812 813 8 |
Py(t) | |8n 82 81 8 M U =G, - MY, - UT .. 9.17)
DPi(t) | | 831 82 833 8
DPy(t)| {841 842 843 8as |
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Substituting the equation (9.17) in equation (9.15) we have,

P(u,t) = U-M,,-G,-MJ, -UT ... (9.18)
In terms of x, y, z separately the above equation can be written as

x(u, t) = U-My -Gy, -M};-U"

yu, t) = U-My Gy, -My, -UT

z(u,t) = U-M;-Gy,-M}, -U" ... (9.19)

9.6.2 B-Spline Surfaces

Applying similar procedure as that of Hermite surface we can represent B-spline surface
as

x(u, t) = U-Mpys-Gy, -Mps - UT
y(u t) = U'MBS'GBSy'MES'UT
z(u, t) = U-Myg-Ggys, - Mpg - UT ... (9.20)

9.6.3 Bezier Surface

Applying similar procedure as that of Hermite surface we can represent Bezier surface -
as

x(u, t) = U-M,-Gg, -Mj-UT
y(u, t) = U-My-Gg,-Mg-UT
z(u,t) = U-M;-Gg,-Mp-UT ... (9.21)

Review Questions

. Explain the true curve generation algorithm.

- List the problems in true curve generation algorithm.

- What is interpolation ? Explain Lagrangian interpolation method.

. What is spline ?

- Differentiate between interpolation spline and approximation spline.
. Give the various methods for specifying spline curve.

- Why to use cubic polynominals ?

. Write a short note on B-spline curve.

O 0 N N WwW N e

- List the properties of B-spline curve.
10. Write a short note on Bezier curve.

11. Explain the properties of Bezier curve.

University Questions

1. Write detailed note on cubic B-splines (Dec-96, May-97, May-2001)
2. What do you understand by cubic B-splines? Discuss with suitable mathematical models.
(Dec-97)
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3.

4.

Temperature recorded at hourly intervals over a 24 hour period are stored in an array “temp".
Write a program to display this as a "smooth” curve. (Dec-97)

What are the properties associated with curves ? Explain significance of each of them.

(May-98)

- Give the mathematical representation for Bezier curve ? Specify highlights and drawbacks of

Bezier curve. If the Bezier curve is to be generated for P, (0, 0), P, (1, 3), P5 (4, 2) and P,(2,1)
using six intervals of parameter u, find out the co-ordinates positions for every value of u.

(May-98)

6. Give mathematical representation for B-spline curves. What aré the properties of B-spline
curves ? (Dec-98)

7. How the description for curved surface is obtained from the equation of Bezier curve ? State
the properties of Bezier curves. ) (Dec-98)

8. Write a short note on B-spline curves (May-99)

9. Show that two curves y(t) = (t2 —-2t, t) and n(t) = t+1,t+ 1) are both C" and G’ continuous

10.

11.

12.

13.

14.

15.
16.

where they join aty(1) =1(0). Note that C " represents parametric continuity and G geometric

continuity. (Dec-99)
What are the properties associated with curves ? Explain a mathematical representation for
B-spline curves. (May-2000, Dec-2000)

Derive a mathematical representation for Bezier curves and state their properties.
. (May-2000, May-2002)
Explain how a curved surface can be obtained from the definition of a Bezier curve.
(May-2000, May-2002)

Explain parametric continuity conditions and geometric continuity conditions. Show that
twocurvesn(t) = (t2 +2t-2, tz) andr(t) = (t2 +2t+1,t+1)areboth C?and G continuous where

they join at n(1) = r(0). Do they meet C' and G' continuity ? (May-2001)
Write a program to display a two dimensional Bezier curve given a set of four control points
in the xy plane. (Dec-2001)
Give important properties for designing curves and illustrate them. (May-2003)
Write a short note on Bezier curve. (May-2003)

aaa



Light Shading

10.1 Introduction

So far we have seen how to construct three-dimensional objects, parallel and perspective
projections of the objects, and removal of hidden surfaces and lines. In this chapter, we will
see the shading of the three-dimensional objects and its model. The shading model is also
called illumination model or lighting model. This model is used to calculate the intensity of
light that we should see at a given point on the surface of an object. '

Later part of this chapter gives the information about the colour models

10.2 Diffuse lllumination

An objects illumination is as important as its surface properties in computing its
intensity. The object may be illuminated by light which does not come from any particular
source but which comes from all directions. When such illumination is uniform from all
directions, the illumination is called diffuse illumination. Usually, diffuse illumination is a
background light which is reflected from walls, floor, and ceiling.

When we assume that going up, down, right and left is of same amount then we can say
that the reflections are constant over each surface of the object and they are independent of
the viewing direction. Such a reflection is called diffuse reflection. In practice, when object
is illuminated, some part of light energy is absorbed by the surface of the object, while the
rest is reflected. The ratio of the light reflected from the surface to the total incoming light to
the surface is called coefficient of reflection or the reflectivity. It is denoted by R. The value
of R varies from 0 to 1. It is closer to 1 for white surface and closer to 0 for black surface. This
is because white surface reflects nearly all incident light whereas black surface absorbs most
of the incident light. Reflection coefficient for gray shades is in between 0 to 1. In case of
colour object reflection coefficient are various for different colour surfaces.

Lambert's Law

We have seen that, the diffuse reflections from the surface are scattered with equal
intensity in all directions, independent of the viewing direction. Such surfaces are
sometimes referred to as ideal diffuse reflectors. They are also called Lambertian reflector,
since radiated light energy from any point on the surface is governed by Lambert's cosine
law. This law states that the reflection of light from a perfectly diffusing surface varies as the

(288)
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cosine of the angle between the normal Normal
to the surface and the direction of the
reflected ray. This is illustrated in

Fig. 10.1. Light

Thus if the incident light from the
source is perpendicular to the surface at

a perpendicular point, that point is fully R
illuminated. On the otherhand, as the 90°
angle of illumination moves away from m77777777777777mm777777777717;
the surface normal, the brightness of the Surface

point drops off; but the points appear to
be squeezed closer together, and the net
effect is that the brightness of the
surface is unchanged. This is illustrated
in Fig. 10.2. In other words we can say
that the reduction in brightness due to
cosine of angle gets cancelled by
increase in the number of light-emitting lzq
points within the area of view.

Fig. 10.1 The direction of light is measured from the
surface normal

A similar cancellation effect can be
observed as the surface is moved farther
from the view point. As we move
farther from the view port, the light
coming from the surface spreads over a
large area. This area increases by the
square of distance, thus the amount of
light reaching the eye decreases by the
same factor. This factor is compensated
by the size of the object. When object is
moved farther from the viewport, it Fig. 10.2 Surface brightness
appears smaller. Therefore, eventhough

there is less light, it is applied to a smaller area on the retina and hence the brightness of the
surface remains unchanged.

The expression for the brightness of an object illuminated by diffuse ambient or
background light can be given as

I:nmbcliff = ka Ia/
where 1, is the intensity of the ambient light or background light, k, is the ambient
reflection coefficient and 1,4 is the intensity of diffuse reflection at any point on the
surface which is exposed only to ambient light. Using above equation it is possible, to create
light or dark scenes or gray shaded objects. But in this simple model, every plane on a
particular object will be shaded equally. The real shaded object does not look like this. For
more realistic shading model we also have to consider the point sources of illumination.
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10.3 Point-Source lHlumination

Point sources emits rays from a
single point and they can approximate
real world sources such as a small
incandescent bulbs or candles. A point
source is a direction source, whose all 777 77 777
the rayscome from the same direction, (a) Surface facing light source receives more light
therefore, it can be used to represent
the distant sun by approximating it as
an infinitely distant point source.

The modelling of point sources
requires additional work because their
effect depends on the surface's
orientation. If the surface is normal
(perpendicular) to the incident light
rays, it is brightly illuminated. The
surfaces turned away from the light
source (oblique surfaces) are less
brightly  illuminated.  This s

illustrated in Fig 10.3 (b) Surface turned away from light source receives less light

For  oblique surfaces, the Fig.10.3
illumination decreases by a factor of Normal
cos I, where [ is the angle between the :
direction of the light and the direction Lih
normal to the surface plane. The angle | 'ght
I is know as angle of incidence. (See _
Fig. 10.4)

.
The factor cos I is given as 7 7777
cosl= N-L Fig. 10.4 The angle of incidence

where L is the vector of length 1 units pointing towards the light source and N is the
vector of length 1 in the direction normal to the surface plane.

Considering both diffuse illumination and point source illumination, the shade of the
visible surface of an object is given as

Lgig = kL + kgl (cosT)
k. L +kyI; (N-L)

where k, I, is the intensity of light coming from visible surface due to diffuse
illumination, -

I; is the intensity of light comes from the point source, k, is the diffuse reflectivity
coefficient and vector dot product (L.N) gives the cosine of the angle of incidence.
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10.4 Specular Reflection

When we illuminate a shiny surface such as polished metal or an apple with a bright
light, we observe highlight or bright spot on the shiny surface. This phenomenon of
reflection of incident light in a concentrated region around the specular reflection angle is
called specular reflection. Due to specular reflection, at the highlight, the surface appears to
be not in its original colour, but white, the colour of incident light.

The Fig. 10.5 shows the specular reflection direction at a point on the illuminated
surface. The specular reflection angle equals the angle of the incident light, with the two
angles measured on opposite
sides of the unit normal surface
vector N. As shown in the
Fig. 10.5, R is the unit vector in the
direction of ideal specular
reflection, L is the unit vector
directed toward the point light
source and V is the unit vector
pointing to the viewer from the :
surface position. ’ Fig. 10.5 Specular reflection

The angle ¢ between vector R and vector V is called viewing angle. For an ideal reflector
(perfect mirror), incident light is reflected only in the specular reflection direction. In such
case, we can see reflected light only when vector V and R coincide, i.e., ¢ = 0.

10.4.1 The Phong lllumination Model

Phong Bui-Tuong developed a popular illumination model for nonperfect reflectors. It
assumes that maximum specular reflection occurs when ¢ is zero and falls off sharply as ¢
increases. This rapid fall-off is approximated by cos" ¢, where n is the specular reflection
parameter determined by the type of surface. The valueg of n typically vary from 1 to several
hundred, depending on the surface material. The larger values (say, 100 or more) of n are
used for very shiny surface and smaller values are used for dull surfaces. For a perfect
reflector, n is infinite. For rough surface, such as chalk, n would be near to 1. Fig. 10.6 and
Fig 10.7 show the effect of n on the angular range of specular reflection.

N N
L L
Shiny surface Dull surface
(Large n) (Small n)

Fig. 10.6 Effect of n on the angular range of specular reflection
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oS ¢ cos ¢
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Fig. 10.7 Different values of cos” ¢ used in the Phong illumination model
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O

The amount of incident light specularly reflected depends on the angle of incidence 0,
material properties of surface, polarization and colour of the incident light. The model is
approximated for monochromatic specular intensity variations using a specular-reflection
coefficient, W(B), for each surface. We can write the equation for Phong specular reflection
model as

Lipee = W(O)I,; cos™

wherel, is the intensity of the light source and ¢ is the angle between viewing vector and
specular reflection vector R.

W(®) is typically set to a constant k,, the material's specular-reflection coefficient, which
ranges from between 0 to 1. The value of k, is selected experimentally to produce
aesthetically pleasing results. Note that V and R are the unit vectors in the viewing and
specular-reflection directions, respectively. Therefore, we can calculate the value of cos ¢
with the dot product V-R. Considering above changes we can rewrite the equation for
intensity of the specular reflection as

Lpee = kI (V-R)"

The vector R in the above equation
can be calculated in terms of vector L ]
and N. This calculation requires
mirroring L about N. As shown in
Fig. 10.8, this can be accomplished with
some simple geometry. Since N and L
are normalized, the projection of L onto
N is N cos 6. Note that R =N cos 6 + S,
where |S| is sin 6. But, by vector
subtraction and congruent triangles, S

is just N cos 0 — L. Therefore, -
Fig. 10.8 Calculating the reflection vector
N cos6 + N cos 8 -L
2Ncos6-L
Substituting N - L for cos 6 we have,
R =2N(N-L)-L

R

Aen. -
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10.4.2 The Halfway Vector

More simplified way of formulation of Phong's illumination model is the use of halfway
vector HL 1t is called halfway vector because its direction is halfwav between the directions
of the light source and the viewer as shown in the Fig. 10.9.

N

Fig. 10.9 Halfway vector H

If we replace V- R in the Phong model with the dot product N - H, this simply replaces
the empirical cos ¢ calculation with the empirical cos a calculation (Refer Fig. 10.9). The
haltway vector is given as

o L+V
[L+ V!

When the light source and the viewer are both at infinity, then the use of N - H offers a
computational advantage, since H is constant for all surface points. Substituting N - H. in
place of V- R the intensity for specular reflection is given as

lspcc = ksll (N ' H)n

For given light-source and viewer positions, vector H gives the orientation direction for
the surface that would produce maximum specular reflection in the viewing dir;:ction. Thus,
H is also referred to as the surface orientation direction for maximum highlights.

10.5 Combined Diffuse and Specular Reflections

For a single point light source, the combined diffuse and specular reflections from any
point on the illuminated surface is given as

I = ldiff+ Ispuc
=k, I +k;I;, (N-L) + k.1, (N-H)"
For a multiple point light source the above equation can be modified as
M
1=k 1+ 1, [ky (N-L)+ky (N-H)"]
i=1

Therefore, in case of multiple point light sources the light reflected at any surface pointis
given by summing the contributions from the individual sources.
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hading Algorithms

From the previous discussion it is clear that we can shade any surface by calculating the
surface normal at cach visible point and applying the desired illumination model at that
point. Unfortunately, this shading method is expensive. In this section, we discuss more
efficient slmdiny) methods for surfaces defined by polvgons. Fach polygon can be drawn
with asingle intensity, or with different intensity obtained at cach point on the surface. Let
s see various shading methods.

10.6.1 Constant-intensity Shading

- The fast and simplest method for N,
shading polygon is constant shading,
also known as faceted shading or flat
shading. in this mecthod, illumination N,
model is applied only onee for cach '
polvegon to determine single intensity
value. The entire polygon s then
displayed with the single  intensity
value.

This method is  valid for the

: . . Fig. 10.10 Polygons and their surface normals
following assumptions :

. The light source is at infinity, so N - L is constant across the polygon face.

2. The viewer is at infinity, so V - R is constant over the surface.

3. The polygon represents the actual surface being modeled, and is not an
approximation to a curved surface.

If cither of the first two assumptions arc not true still we can use constant intensity

shading approach; however, we require some method to determine a single value for each of
LLand V vectors.

10.6.2 Geuraud Shading

In this method, the intensity interpolation technique developed by Gouraud is used,
hence the name. The polygon surface is displayed by linearly interpolating intensity values
across the surface. Here, intensity values for each polygon are matched with the values of
adjacent polygons along the common edges. This eliminates the intensity discontinuities
that can occur in flat shading.

B.y performing following calculations we can display polygon surface with Gouraud
shading. :

1. Determine the average unit normal vector at cach polygon vertex.
2. Apply an illumination model to each polygon vertex to determine the vertex intensity.
3. Linearly interpolate the vertex intensities over the surface of the polygon.

We can obtain a normal vector at each polygon vertex by averaging the surface normals
of all polygons sharing that vertex. This is illustrated in Fig. 10.11.
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As shown in the Fig. 10.11, there are three surface normals N, N, and N, of polygon
sharing vertex V. Therefore, normal vector at vertex V is given as

_ Ny +N,; +N,

INy + N+ Ny

v

In general, for any vertex position V, we
can obtain the unit vertex normal by
equation

Fig. 10.11 Calculation of normal

where n is the number of surface vector at polygon vertex V
normals of polygons sharing that vertex.

The next step in Gouraud shading is to
find vertex intensities. Once we have the
vertex normals, their vertex intensities can 3
be determined by applying illumination
model to each polygon vertex. Finally, each

polygon is shaded by linear interpolating of 1
vertex intensities along each edge and then
between edges along each scan line. This is P Scan line
illustrated in Fig. 10.12. a\/b
For each scan line, the intensity at the 2

intersection of the scan line with a polygon
edge is linearly interpolated from the
intensities at the edge endpoints. For
example, in Fig. 10.12, the polygon edge Fig. 10.12

with endpoint vertices 1 and 2 is intersected

by the scan line at point 'a’. The intensity at point a’ can be interpolated from intensities 1,
and I, as

—~ 2 '_ll'i"l )dlz

Yi—Ya2 Yi—Yo2

Similarly, we can interpolate the intensity value for right intersection (point b) from
intensity values I, and I; as

Ib: }‘1_)2134_)3_)'{’ I2

Ya—Ya2 Ya~Ya
Once the intensities of intersection points a and b are calculated for a scan line, the
intensity of an interior point (such as P in Fig. 10.12) can be determined as
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Xy - X Xp ~ X
During the scan conversion process, usually incremental calculations are used to obtain
the successive edge inlensity values between the scan lines and to obtain successive
intensily along a scan line. this eliminates the repeatative calculations,
If the intensity at edge position (x, y) is interpolated as
-\ -y
| = YooY [ Yooy, I,
Yi—Yoe YioYa

then we can obtain the intensity along this edge for the next scan line, y = 1 as (sce
Fig. 10.13)

I, -1
" = [+=2
Yi—¥o
y
3
1
_ Scan lines
y-1 D
1
(I
I
|: 2
[}
[
1
[}
X x+1 X

Fig. 10.13 Calculation of incremental interpolation of intensity values along a polygon edge for
successive scan lines

Similarly, we can obtain intensities at successive horizontal pixel positions along each
scan line (sec Fig. 10.14) as

Advantages
1. It removes the intensity discontinuities exists in constant shading model.

2. It can be combined with a hidden surface algorithm to fill in the visible polygons
along each scan line.
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a b )
B\G Scan line

— X

1
|
1
|
i
]
i
|
|
|
X

X +1

Fig. 10.14 Calculation of incremental interpolation of intensity values along a scan line

Disadvantages

1. Highlights on the surface are sometimes displayed with anomalous shapes.

2. The lincar intensity interpolation can result bright or dark intensity streaks to
appear on the surface. These bright or dark intensity streaks, are called Mach
bands. The mach band effect can be reduced by breaking the surface into a greater

number of smaller polygons.

3. Sharp drop of intensity values on the polygon surface can not be displaved.

10.6.3 Phong Shading

Phong shading, also known as normal-vector interpolation shading, interpolates the
surface normal vector N, instead of the intensity. By performing following steps we can
display polygon surface using Phong shading.

1. Determine the average unit normal vector at each polygon vertex.

2. Linearly interpolate the vertex normals over the surface of the polygon.

3. Apply an illumination model along each scan line to determine projected pixel
intensities for the surface points.

The first steps in the Phong shading is same as first step in the Gouraud shading. In the
second step the vertex normals are linearly interpolated over the surface of the polygon. This
is illustrated in Fig. 10.15. As shown in the Fig. 10.15, the normal vector N for the scan line
intersection point along the edge between vertices 1 and 2 can be obtained by vertically
interpolating between edge endpoint normals :

_ y —
N = Y=Y NI + yi—y ]\]2
Yi=Ya2 Yi—Ya
Like, Gouraud shading, here also we can use incremental methods to evaluate normals
between scan lines and along each individual scan line. Once the surface normals are
evaluated the surface intensity at that point is determined bv applving the illumination
model.
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'

Y1

Y2

= X

Fig. 10.15 Calculation of interpolation of surface normals along a polygon edge
Advantages
1. It displays more realistic highlights on a surface. (See Fig. 10.16 d)
2. It greatly reduces the Mach-band cffect.
3. [t gives more accurate results.
Disadvantage

1. It requires more calculations and greatly increases the cost of shading steeply.

Fig. 10.16 shows the improvement in display of polygon surface using Phong shading
over Gouraud shading.

(a) (b) (c) (d)
Gouraud shading Phong shading Gouraud shading Phong shading

Fig. 10.16
Method of Speeding Up Phong Shading Technique

Phong shading is applied by determining the average unit normal vector at each
polygon vertex and then linearly interpolating the vertex normals over the surface of the
polygon. Then apply an illumination model along each scan line to calculate projected pixel
intensities for the surface points. Phong shading can be speeded up by the intensity
calculations using a Taylor- Series expansion and triangular surface patches. Since phong
shading interpolates normal vectors from vertex normals, we can express the surface normal
N at any point (x, y) over a triangle as

N = A,+B,+C

where A, B, C are determined from three vertex equations
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Ny = Ax, + By, +C k=1,2,3 with (x,, y,) denoting a vertex positions. Discarding the
reflectivity and attenuation parameters, the calculations for light source diffuse reflection
from a surface point (x, y) as

L-N L-(A,+B, +C)
IL] IN] IL| |A,+B, +C]
(L-Ayx+(L-B)y+L-C

[l A, + B, +C|

i

ldil‘l‘ (X’ )’)

Now the expression can be rewritten in the form as
ax-+ by + ¢

L, y) = TN 4

(dx” +exy+ fy = + gx4 hy +1i)72

Where parameters a, b, ¢ and d are used to represent the various dot products. We can
express the denominator as a Taylor - series expansion and retain terms up to second degree
inxandy. . 4 s .
g (X, y) = Tox™ + Tyxy+ Tay ™ + Tox+ T y+ 1,
where cach Ty is a functions of parameter a, b, ¢ and so forth.

Using forward differences, we can evaluate above equation with only two additions for
cach pixel position (x, y) once the initial forward difference parameters have been evaluated.
Thus the fast phong shading technique reduces the calculations and speed up the process.

10.6.4 Halftone Shading

Many displays and hardcopy devices are bilevel. They can only produce two intensity
levels. In such displays or hardcopy devices we can create an apparent increase in the
number of available intensities. This is achieved by incorporating multiple pixels positions
into the display of each intensity value. When we view a very small arca from a sufficiently
large viewing distance, our eyes average fine details within the smatl arca and record only
the overall intensity of the area. This phenomenon of apparent increase in the number of
available intensities by considering combine intensity of multiple pixels is known as
halftoning. The halftoning is commonly used in printing black and white photographs in
newspapers, magazines and books. The pictures produced by halftoning process are called
halftones.

In computer graphics, halftone reproductions are approximated using rectangular pixel
regions, say 2x 2 pixels or 3x 3 pixels. These regions are called halftone patterns or pixel
patterns. Fig. 10.17 shown the halftone patterns to create number of intensity levels.

7 ale
Y f\u }J ¥< N
3 ) ‘/2 kjg’\) \jg/

0<1<0.2 02<1<04 04<1<06 06<1<08 08<I<10

Fig. 10.17 (a) 2 x2 Pixel patterns for creating five intensity levels



Computer Graphics 300 Light Shading
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Fig. 10.17 (b) 3 x3 Pixel patterns for creating ten intensity levels
10.6.5 Dithering Techniques

Dithering refers to techniques for approximating halftones without reducing resolution,
as pixel grid patterns do. The term dithering is also applied to halftone approximation
methods using pixel grids, and sometimes it is used to refer to colour halftone
approximations only.

Random values added to pixel intensities to break up contours are often referred as
dither noise. Number of methods are used to generate intensity variations. Ordered dither
methods generate intensity variations with a one-to-one mapping of points in a scene to the
display pixels. To obtain n* intensity levels, it is necessary to set up an nx n dither matrix D,
whose clements are district positive integers in the range of O ton” - 1. For e.g. it is possible to
generate four intensity levels with

31
D, = 0 2} and it is possible to generate nine intensity levels with

7 2 6
Dy=1[4 01
3 85

The matrix elements for D, and D, are in the same order as the pixel mask for setting up
2 x 2 and 3 x 3 pixel grids respectively. For bilevel system, we have to determine display
intensity values by comparing input intensities to the matrix elements. Each input intensity
is first scaled to the range 0 <1< n” If the intensity 1 is to be applied to screen position (x, y),
we have to calculate row and column numbers for the either matrix as

i = (xmodn)+1, j=(ymodn)+1
IfI>D, (i,j) the pixel at position (x, y) is turned on; otherwise the pixel is not turned on.

Typically, the number of intensity levels is taken to be a multiple of 2. High order dither
matrices can be obtained from lower order matrices with the recurrence relation.
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assuming n > 4. Parameter u, ,, is the unity matrix.

Another method for mapping a picture with m x n points to a display arca with m x n
pixcls is error diffusion. Here, the error between an input intensity value and the displayed
pixelintensity level ata given position is dispersed, or diffused to pixel positions to the right
and below the current pixel position.

10.7 Transparency

In the shading models we have not considered the transparent objects. A transparent
surface, in general, produces both reflected and transmitted light. It has a transparency
cocfficient T as well as values for reflectivity and specular reflection. The cocfficient of
transparency depends on the thickness of the object because the transmission of light
depends exponentially on the distance which the light ray must travel within the object. The
expression for coefficient of transparency is given as

T = te™

Where t is the coefficient of property of
material which determines how much of the light
is transmitted at the surface instead of reflected, a
is the cocfficient of property of material which tells
how quickly the material absorbs or attenuates the N
light, d is the distance the light must travel in the Trans

. parent
object. object

Incident .
light Reflection

direction

When light crosses the boundary between two
media it changes the direction as shown in the
Fig. 10.18. This effect is called refraction. The ' \
effect of refraction is observed because the speed
of light is different in different materials resulting Fig. 10.18 Refraction
different path for refracted light from that of incident light. The direction of the refracted
light is specified by the angle of refraction (8 ,). It is the function of the property materials
called the index of refraction (n). The angle of refraction 0, is calculated from the angle of

incidence 8, the index of refraction n; of the incident material (usually air), and the index of
refraction n, of the refracting material according to Snell's law :

: n; .
sin®, = —-sin®,

n,

In practice, the index of refraction of a material is a function of the wave length of the
incident light, so that the different colour components of a light ray refracts at different
angles. The transparency and absorption coefficients are also depend on colour. Therefore,
when we are dealing with colour objects we require three pairs of transparency and
absorption coefficients.
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Refraction
direction

T direction

Fig. 10.19 Refraction direction and angle of refraction 0,

For modeling of transparent surface we have to consider contributions from the light
reflected from the surface and the light coming from behind the object. If we assume for a
given surface that

+ The transparency coefficient for the object is a constant

* Refraction cffects are negligible and

* No light source can be seen directly through the object,

then the light coming through the object is given as,

Vo= v+t

where v is the total amount of light,

v, is the amount of light reflected from the surface,

t is the transparency coefficient and,

v, is the light coming from behind the object.

To get more realistic images we have to consider the angular behavior of the reflection
v, transmission at the surface and also the attenuation due to thickness. The simple
approximation for this behavior can be given as

t = (tnmx - tmin) (N E)H + tmin

where (N- E)* is the cosine of the angle between the eye and the surface normal raised to

the power. This angle decides the distance the light must travel through the object. When
viewed straight on, angle is 0 i.e. cosine of angle is 1 (highest) and the distance travelled by
light is minimum. When viewed at a glancing angle, cosine is less than 1 and the distance
travelled by light is more. Therefore, we can say that cosine of angle is maximum when
surface is viewed straight on and it drops off for glancing views. The power of angle
represented by a enhances the effect. The values of o of 2 or 3 give reasonable effects.

10.8 Shadows

A shadowed object is one which is hidden from the light source. It is possible to use
hidden surface algorithms to locate the areas where light sources produce shadows. In order
to achieve this we have to repeat the hidden-surface calculation using light source as the
viewpoint. This calculation divides the surfaces into shadowed and unshadowed groups.
The surfaces that are visible from the light source are not in shadow; those that are not
visible from the light source are in shadow. Surfaces which are visible and which are also
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visible from the light source are shown with both the background illumination and the
light-seurce illumination. Surfaces which are visible but which are hidden from the light
source are displayed with only the background illumination, as shown in the Fig. 10.20.

Light

Viewere===22

Fig. 10.20 Shadow

Another way to locate shadow areas is the use of shadow volumes. A shadow volume is

Light defined by the light source and an object and is
bounded by a sct of invisible shadow polygons,
as shown in the Fig. 10.21. This volume is also
known as polygon's shadow volume. By
comparing visible polygon with this volume we
can identify the portions which lie inside of the
volume and which are outside of the volume.
The portions which lie inside of the volume are
shadowed, and their intensity calculations do
not include a term from the light source. the
polygons or portions of polygons which lie
outside the shadow volume are not shaded by

this polygon, but might be shaded by some other
Fig. 10.21 polygon so they still must be checked against the
other shadow volume.

10.9 Ray-Tracing

If we consider the line of sight from a pixel

' position on the view plane through a scene, as

’ in Fig. 10.22, we can determine which objects in

” . the scene (if any) intersect this line. From the

intersection points with different object, we can
identify the visible surface as the one whose
intersection point is closest to the pixel. Ray
tracing is an extension of this basic idea. Here,
instead of identifying for the visible surface for
each pixel, we continue to bounce the ray
around the picture. This is illustrated in
Fig. 10.23. When the ray is bouncing from one
surface to another surface, it contributes the

Fig. 10.22 A ray along the line of sight from a
pixel position through a scene
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Fig. 10.23 Bouncing of ray around the scene

intensity for that surfaces. This is a
simple  and  powerful  rendering
technique for obtaining global refiection
and transmission effects.

As shown in the Fig. 10.23, usually
pixel positions are designated in the xy
planc and projection reference point lie
on the 7 axis, i.e. the pixel screen area is
cenlered on viewing coordinate origin.
With  this  coordinate  system  the
contributions to a pixel is determined by
tracing a light path backward from the
pixel to the picture.

For cach pixel ray, cach surface is
tested in the picture to determine if it is

intersected by the ray. If surface is intersected, the distance from the pixel to the surface
intersection point is calculated. The smallest calculated intersection distance identifies the
visible surface for that pixel. Once the visible surface is identified the ray is reflected off the
visible surface along a specular path where the angle reflection equals angle of incidence. If
the surface is transparent, the rav is passed through the surface in the refraction direction.
The ray reflected from the visible surface or passed through the transparent surface in the
refraction direction is called secondary ray. The rav after reflection or refraction strikes
another visible surface. This process is repeated recursively to produce the next generations
of reflection and refraction paths. These paths are represented by ray tracing tree as shown
in the Fig. 10.24.

Fig. 10.24 Binary ray-tracing tree

As shown in the Fig. 10.24, the left
branches in the binary ray tracing tree
are used to represent reflection paths,
and right branches are used to represent
transmission paths. The recursion depth
for ray tracing tree is determined by the
amount of storage available, or by the
user. The ray path is terminated when
predetermined depthis reached orifray
strikes a light source. As we go from top
to bottom of the tree, surface intensities
are attenuated by distance from the
parent surface. The surface intensities of
all the nodes arc added traversing the
ray tree from bottom to top to determine
the intensity of the pixel.
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If pixel ray does not intersect toany surface then the intensity value of the background is
assigned to the pixel. If a pixel ray intersects a nonreflecting light source, the pixel can be
assigned the intensity of the source, although light sources are usually placed beyond the
path of the initial ravs.

Reflected The Fig. 10.25 shows a surface intersected by a
@y, /0 | ray and unit vectors needed for the reflected
/ ) light-intensity calculations. Here, u is the unit

= vector in the direction of the ray path, N is the unit
surface normal, R is the unit reflection vector, L is
the unit vector pointing to the light source, and H is
=N the unit vector halfway between V (viewer) and 1.
(light source).

H
Incoming ray
Fig. 10.25 Surface intersected by aray Reflected
and the unit vectors ray

If any object intersects the path along L between
the surface and the point light source, the surface is in
shadow with respect to that source. Hence a path 0
along L is referred to as shadow ray. Ambient light at -
the surtace is given as K 1, diffuse reflection due to
the surface is proportional to K; (N.L), and the

specular-reflection component is proportional to K, N
(H.N)"-. We know that, the specular reflection
direction for R depends on the surface normal and Incoming ray

the incoming ray direction. It is given as

R=u-Q2u.N)N Fig. 10.26 Refracted ray through the
transparent material

In a transparent material light passes through the
material and we have to calculate intensity contributions from light transmitted through the
material. Referring the Fig. 10.26, we can obtain the unit transmission vector from vectors u
and N as

N; n;
T = —]Lu—(cos(-)l. —Lcosoi)N
N n,

where n; and n, are the indices of relfection in the incident material and the refracting

meterial, respectively. The angle of refraction 8 is given by Snell’s law

2
cos@, = ]—(E—] (1-cos® 0,)
n,
10.9.1 Ray Surface Intersection Calculations
The ray equation is given as

P = P,+su
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Where P, is the initial position of ray, I’ is any point along the ray path at distance s from
P, and u is the unit direction vector. The ray equation gives the coordinates of any point I’
along the ray path at a distance s from P, Initially, P, is set to the position of the pixel on the
pm]cctmn plane, or it is chosen as a projection reference point. Unit vector u is initially
obtained from the position of the pixel through which the ray passes and the projection
reference point

Vectors Pjand uare updated for the secondary mys at the ray-surface intersection point
at cach intersected surface. For the secondary rays, reflection direction for u is R and the
transmission direction is T. We can locate the surface intersections by simultancously
solving the ray equation and the surface equation for the individual objects in the scene.

The simplest object to ray trace is sphere, i.¢. we can casily identify that whether the ray
does intersect the sphere or not; and if it intersects we can casily obtain the surface
intersection coordinates from the ray equation. Consider the sphere of radio r and center
position P, as shown in Fig. 10.27. P is any point on the sphere which satisfies the sphere
cquation :

2 2
|P-PJ-r7 =0
1
Substituting the value of PP from ray equation we can write above equation as

2 -
> . Y7 _ 2 =
“(, +5, —I(! r- =0

Fig. 10.27 A ray intersecting a sphere having radius r centered on position P¢
If we assume AP = P- — P, and expand the dot product, we get the quadratic equation
s =2 (u-AP)s +( A P|3 -1’y =0
By solving quadratic equation we get,

s = u-AP =+ \/(u~A P)2 —|A P +1?
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In the above equation if the discriminant is negative we can sayv that the rav does not
ntersect the sphere; otherwise the surface intersection coordinates can be obtained from the
rav cquation.

In case of polyhedra more processing is
. required to locate the surface intersections.
1N o For this reason instead of doing intersection
calculations directly, first the intersection
test 1s carried out on bounding volume, as
\ shown in Fig. 10.28; and it the ray inlersects
the bounding volume further tests and
inlersection caleulations are carried oul. As
shown in Fig. 1028, the polyhedron is
bounded by a sphere. If a ray does not
intersect the sphere, we do not need to do
any turther testing on the polvhedron. But if
ray does intersect the sphere, we have to
locate front faces with the test

Fig. 10.28 Polyhedron bounded by a sphere

u-N <0
Where N is a surface normal. For cach face of the polyhedron that satisfies inequality in
above cquation, we have to solve the plane equation as
N-IP=-D
for suriace position P that also satisties the rav equation. With these initial calculations
we can say that the position I is both on the plance and on the ray path if
N-(Py+5u) = -D
and the distance from the initial ray position to the planc is
D+ N- D,
N-u
The above calculations gives us a position on the infinite plane that contain the polygon
face, however thev do not satisfy that the position is inside or outside the polvgon

boundaries. Therefore, to determine whether the ray intersected this face of the polyhedron,
we have to perform an inside-outside test discussed in section 3.5.

In casc of other objects, such as quadric or spline surfaces we have to follow the same
procedure to calculate ray-surface intersection positions.

s =

10.9.2 Reducing Object-Intersection Calculations

When scene contains more than one objects, most of the processing time for each ray is
spent in checking objects that are not visible along the ray path. Therefore, as discussed
carlier, adjacent objects are enclosed in groups within a bounding volume, such as a sphere
or a box. We can then proceed for intersection calculations only thn the ray intersects the
bounding volume. This approach can be extended to include a hierarchy of bounding
volumes. That is, we enclose several bounding volumes within a larger volume and carry
out the intersection test hierarchically. In this, we first test the outer boundmb volume and
then if necessary test the smaller inner bounding volumes and so on.
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Another  method  known  as
space-subdivision method is also used
to reduce intersection caleulations. In this
method, the scene is enclosed within a
cube and a cube then successively
subdivided until cach subregion (cell)
contains no more than a preset maximum
number of surfaces. For example, one
surface per cell. We then trace rays
through the individual cells of the cube,
performing intersection tests only within
those cells containing surfaces. Thereis a
trade-off between the cell size and the
number of surfaces per cell. If we set the maximum number of surfaces per cell too low, cell
size can become too small and cell number can become too large increasing cell-traversal
processing,.

NNV

Colly <7

NNV

L
—

NERNEANEAN

Fig. 10.29 Subdivision of cube into cells

N, Initially, we have to determine the intersection point on
the front face of the cube. It can be determined by checking,
\“ the intersection coordinates against the cell boundary
L positions. We then need to process the ray through the cells
NN by determining the entry and exit points as shown in the
/ ~ 1 Fig. 10.30, for cach cell traversed by the ray until ray intersect

and object surface or exit the cube.

NZ!

If a ray direction is u and a ray entry pointis Py foracell,
the potential exit taces are those for which

Fig. 10.30 Traversal of ray
through a cell

u-N, >0
where N, are the normal vectors. If these vectors are aligned with coordinate axes,
then
[(£1,0,0)
Ny = <f( +1,0)
[(0, 0,+1)

and to determine the three candidate exits plane we have to check only the sign of each

component of u. The exit position on each candidate plane can be obtained from the ray
equation as

bl — >
l\)ulk - [ +Sku

where S, is the distance along the ray from P, to P, . Substituting the ray equation into
the plane equation for each face of the cell we have,

NP, ,=-D

Now, the ray distance to each candidate exit face can be given as

ouy, k
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_D-N,.P
6 _ DN
Ny -u

We have to select smallest S,. The above calculations are simple when the normal

vectors are aligned with the candidate axes. For example, if a candidate normal vector is
(0,1, 0), then for that plane we have

Skz

Xk = %o
uy
where u = (u,, u,, u,), and x, is the value of the right boundary face for the cell.

10.9.3 Antialiased Ray Tracing

Traditional ray tracing systems suffer from aliasing artifacts. The term aliasing in
computer graphics is loosely defined. It can mean almost anything unwanted in the
rendered image. Typically aliasing is used to describe jagged edges. In the real world things
are not quite as perfect as in a computer generated world-edges and boundaries are not as
sharp, reflections are not as perfect, and things can be in and out of focus. If a renderer is
being used to approximate reality then these things must be taken into account.

Three basic techniques are used to perform antialiased ray tracing. These are super
sampling, adaptive sampling and stochastic sampling. In these sampling methods, the pixel
is treated as a finite square area instcad of a single point.
10.9.3.1 Super Sampling

In supersampling, multiple,

/ evenly spaced rays (samples) are

~ t:ﬁ'ken over cach pixel area. The

yd Fig. 10.31 shows a simple

/ supersampling procedure with

T~ four rays per pixel, one at each
<

pixel corner. To determine the

T~
\ . . .
. . overall pixel intensity, the
] P p.os'tt.'onsl intensity of these pixel rays are
~] 2" projection plane averaged. However, if the
—— intensities for the four rays are

™~ not appropriately equal, or if

Projection some small object lies between
reference point the four rays, we have to divide
Fig. 10.31 Super sampling procedure the pixel area into subpixels and

repeat the process. This is
illustrated in Fig. 10.32. Here, pixel area divided into nine subpixels using 16 rays, one at
each subpixel corner.

Fig. 10.32 Subdivision of pixel into nine subpixels
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10.9.3.2 Adaptive Sampling

[In adaptive somplinb, multiple, unevenly spaced rays (samples) are taken in some
regions of the plxc arca. For example, more rays can be taken near object edges to obtain a
o 2ol the pixel intensities. Again, to determine the overall pixel intensity where
multiple rays are used, the intensity of rays from subpixels are averaged. However, the
subpixels that do not have nearly equal intensity rays are further subdivided until each
subpixel has approximately equal intensity rays or an upper bound, say, 256, has been
reached for the number of rays per pixel.

10.9.3.3 Stochastic Sampling / Distributed Ray Tracing

Distributed ray tracing is a stochastic sampling method. It
. _is not ray tracing on a distributed system. It is a ray tracing
» method based on randomly distributed rays over the pixel
. * |, arca (Refer Fig. 10.33) used to reduce aliasing effect. In this
d method, the multiple samples are taken and averaged
¢ together. The location of where the sample is random so that
the resulting average in an approximation of a finite area
. . covered by the samples.

L L ]

Fig. 10.33 The random

distribution of rays The random distribution of a number of rays over the

pixel surface is achieved by the technque called jittering. In
this technique, initially, pixel area is divided into the 16 subareas as shown in the Fig. 10.33.
Then random ray positions are obtained by jittering the center coordinates of each subpixel
area by small amounts say dx and dy, where both dx and dy are assigned values in the
inverter (- 0.5, 0.5). Therefore, if center position of a cell is specified as (x, y) then the jitter
position is (x + 8x, y + dy).

10.9.3.4 Advantages of Distributed Ray Tracing

The intensity of a point in a scene can be represented analytically by an integral over the
illumination function and the reflectance function. The evaluation of this integral, while
extremely accurate, is too expansive for most graphics applications. Traditional ray tracing
makes assumptions about the components of this integral to simplify evaluation. For
example, the Phong model assumes that diffuse light is reflected equally in all directions,
and specular light is at full intensity in the reflected direction and falls off exponentially with
the cosine of the angle away from this direction. In addition, light sources are modeled as
single points, so the light that emanates from a source and hits a surface can be represented
by a single ray.

Distributed ray tracing uses a slightly better approximation for the illumination and
reflectance integrals. The idea is based in the theory of oversampling. Instead of
approximating an integral by a single scalar value, the function is point sampled and these
samples are used to define a more accurate scalar value. The practical benefits of this are :
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* Gloss (fuzzy reflections)
* Translucency

* Soft shadows

* Depth of field

* Motion blur

Gloss '

Traditional ray tracing is good at representing perfect reflecting surfaces, but poor at
representing glossy or partially reflecting surfaces. Only when surfaces arg perfect mirrors
do the relfections look identical to the scene they are reflecting. More often surfaces are
glossy and reflect a blurred image of the scene. This is due to the light scattering propertics
of the surface. Reflections in traditional ray tracing are always sharp, even partial
reflections. Glossy surfaces are generated in distributed ray tracing by randomly
distributing rays reflected by a surface. Instead of casting a single ray out in the reflecting
direction, a packet of rays are sent out around the reflecting direction. The actual value of
reflectance can be found by taking the statistical mean of the valuu, returned by each of these
rays.

Translucency

Traditional ray tracing is good at representing perfectly transparent surfaces, but poor at
representing translucent surfaces. Real surfaces that are translucent generally transmit a
blurred image of the scene behind them. Distirbuted ray tracing achieves this type of
translucent surface by casting randomly distributed rays in the general direction of the
transmitted ray from traditional ray tracing. The value computed from each of these rays is
then averaged to form the true translucent component.

Soft Shadows

Shadows in traditional ray tracing are discrete. When shading a point, each light source
is checked to see if it is visible. If the source is visible it has a contribution to the shading of
the point, otherwise it does not. The light source itself is modeled by a single point, which is
fairly accurate for sources that are a great distance away, but a poor representation for large
sources or sources that are close. The result of this discrete decision making is that the edges
of shadows are very sharp. There is a distinct transition from when points are visible to the
light source to when they are not. Shadows in the real world are much softer. The transition
from fully shadowed to partially shadowed is gradual. This is due to the finite area of real
light sources, and scattering of light of other surfaces. Distributed ray tracing attempts to
approximate soft shadows by modeling light sources as spheres. When a point is tested to
see if it is in shadow, a set of rays are cast about the projected area of the light source. The
amount of light transmitted from the source to the point can be approximated by the ratio of
the number of rays that hit the source to the number of rays cast. This ratio can be used in the
standard Phong lighting calculations to scale the amount of light that hits a surface.

Depth of Field

Both the human eye and cameras have a finite lens aperture, and therefore have a finite
depth of field. Objects that are two far away or two close will appear unfocused and blurry.
Almost all computer graphics rendering techniques use a pinhole camera model. In this
model all objects are in perfect focus regardless of distance. In many ways this is
advantageous, blurring due to lack of focus is often unwanted in images. However,
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simulating depth of field can lead to more realistic looking images because it more
accurately models true optical systems. Distributed ray tracing creates depth of field by
placing an artificial lens in front of the view plane. Randomly distributed rays are used once
again to simulate the blurring of depth of field. The first ray cast is not modified by the lens.
[tis assumed that the focal point of the lens is at a fixed distance along this ray. The rest of the
rays sent out for the same pixel will be scattered about the surface of the lens. At the point of
the lens they will be bent to pass through the focal point. Points in the scene that are close to
the focal point of the lens will be in sharp focus. Points closer or further away will be blurred.

Motion Blur

Animation in computer graphics is produced by generating a sequence of still images
and then playing them back in order. This is yet another sampling process, but it is temporal
rather than spatial. In movie cameras, each frame represents an average of the scene during
the time that the camera shutter is open. If objects in the scene are in motion relative to the
camera, then they will appear blurred on the film. Distributed ray tracing can simulate this
blurring by distributing rays temporally as well as spatially. Before each ray is cast, objects
are translated or rotated to their correct position for that frame. The rays are then averaged
afterwards to give the actual value. Objects with the most motion will have the most
blurring in the rendered image.

10.10 Colour Models

A colour model is a specification of a 3D colour coordinate system and a visible subset in
the coordinate system within which all colours in a particular colour range lie. For example,
RGB colour model is the unit cube subset of the 3D Cartesian coordinate system. The colour
model allows to give convenient specification of colours in the specific colour range or
gamut. There are three hardware oriented colour models : RGB, used for colour CRT
monitors, YIQ used for the broadcast TV colour system, and CMY (Cyan, Magenta, Yellow)
used for some colour printing devices. However, these models are not easy to use because
they does not relate directly to intuitive colour notions of hue, saturation, and brightness.
Therefore, another class of colour model has been developed. These include HSV, HLS and
HVC models. In this chapter we are going to study RGB, CMY, HSV and HLS models.

10.10.1 Properties of Light

A light source produced by a sun or electric bulb emits all frequencies within the visible
range to give white light. When this light is incident upon an object, some frequencies are
absorbed and some are reflected by the object. The combination of reflected frequencies
decides-the colour of the object. If the lower frequencies are predominant in the reflected
frequencies, the object colour is red. In this case, we can say that the perceived light has a
dominant frequency at the red end of the spectrum. Therefore, the dominant frequency
decides the colour of the object. Due to this reason dominant frequency is also called the hue
or simply the colour.

Apart from the frequency there are two more properties which describe various
characteristics of light. These are : brightness and saturation (purity). The brightness refers
to the intensity of the perceived light. The saturation describes the purity of the colour.
Pastels and pale colours are described as less pure or less saturatéd: When the two
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properties purity and dominant frequency are used collectively to describe the colour
characteristics, are referred to as chromaticity.

We know that two different colour light sources with suitably chosen intensities can be
used to produce a range of other colour. But when two colour sources are combined to
produce white colour, they are referred to as complementary colours. Red and cyan, green
and magenta, and blue and yellow are complementary colour pairs. Usually, the colour
modcl use combination of three colours to produce wide range of colours, called the colour
gamut for that model. The basic colours used to produce colour gamut in particular model
are called primary colours.

10.10.2 CIE Chromaticity Diagram

Matching and therefore
defining a coloured light with g
combination of three fixed primary

fz

1.51 colours is desirable approach to
specify  colour.  In 1931, the
Commission  Internationale  de

I' Eclairage  (CIE) defined  three
standard primaries, called X, Y and
Z to replace red, green and blue.
Here, X, Y and Z represent vectors
in a three-dimensional, additive
colour space. The three standard
primaries are imaginary colours.
They are defined mathematically
Fig. 10.34 Amounts of CIE primaries needed to display  with positive colour-matching
spectral colours functions, as shown in Fig. 10.34.

They specify the amount of each primary needed to describe any spectral colour.

Colour matching CIE amount
(o] -
13 o

0 400 500 600 700 2{nm)
Wavelength

The advantage of using CIE primaries is that they eliminate matching of negative colour
values and other problems associated with selecting a set of real primaries.

Any colour (C,) using CIE primaries can be expressed as
C, = XX+YY+ZZ

where X, Y and Z are the amounts of the standard primaries needed to match C, and X,
Y and Z represent vectors in a three-dimensional, additive colour space.

With above expression we can define chromaticity values by normalizing against
luminance (X + Y + Z). The normalizing amounts can be given as
X X V4
X =—, y = —_—, Z = -
X+Y+2Z X+Y+Z X+Y+2Z
Notice that x + y + z=1. That is, x, y and z are on the (X + Y + Z = 1) plane. The complete

description of colour is typically given with the three values x, y and Y. The remaining
values can be calculated as follows :
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Fig. 10.35

Chromaticity values depend
only on dominant wavelength and
saturation and are independent of
the amount of luminous energy. By
plotting x and y for all visible colours,
we obtain the CIE chromaticity
diagram shown in Fig. 10.35, which is
the projection onto the (X, Y) plane of
the (X +Y + Z =1) plane.

The interior and boundary of the
tongue-shaped region represent all
visible chromaticity values. The
points on the boundary are the pure
colours in the electromagnetic
spectrum, labeled according to
wavelength in nanometers from the
red end to the violet end of the
spectrum. A standard white light, is

formally defind by a light source illuminant C, marked by the center dot. The line joining the
red and violet spectral points is called the purple line, which is not the part of the spectrum.

The CIE chromaticity diagram is useful in many ways :

* lItallows us to measure the dominant wavelength and the purity of any colour by
matching the colour with a mixture of the three CIE primaries.

* [t identifies the complementary colours.

* ltallows to define colour gamuts or colour ranges, that show the effect of adding
colours together.

Fig. 10.36 Complementary colours on chromaticity

diagram

The Fig. 1036 represents the
complementary colours on the
chromaticity diagram. The straight
line joining colours represented by
points D and E passes through point
C (represents white light). This
means that when we mix proper
amounts of the two colours D and E
in Fig. 10.36, we can obtain white
light. Therefore, colours D and E are
complementary colours, and with
point C on the chromaticity diagram
we can identify the complement
colour of the known colour.
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Colour gamuts are represented
on the chromaticity diagram as a
straight line or as a polygon. Any
two colours say A and B can be
added to produce any colour along
their connecting line by mixing their
appropriate amounts. The colour
gamut for three points, such as D, ©
and F in Fig. 10.37, is a trianglc with
three colour points as vertices. The
triangle DEF in Fig. 10.37, shows that
X three primaries can only gencrale
colours inside or on the bounding
edges of the triangle. '

Fig. 10.37 Definition of colour gamuts on the
chromaticity diagram

The chromaticity diagram is also
useful to determine the dominant
wavelength of a colour. For colour
point D in the Fiyg. 10.38, we can draw
a straight line from C through 1 to
intersect the spectral curve at point k.
The colour D can then be represented
as a combination of white light C and
the spectral colour E. Thus, the
dominant wavelength of D is E. This
method for determining dominant
wavelength will not work for colour
points that are between C and the
purple line because the purple line is
X not a part of spectrum.

Fig. 10.38 Determination of dominant wavelength on the
chromaticity diagram

10.10.3 RGB Colour Model

The red, green and blue (RGB) colour model used in colour CRT monitors and colour
raster graphics employs a Cartesian coordinate system. In this model, the individual
contribution of red, green and blue are added together to get the resultant colour.

We can represent this colour model with the unit cube defined on R, G, and B axes, as
shown in the Fig. 10.39 (See Fig. 10.39 on next page).

The vertex of the cube on the axes represent the primary colours, and the remaining
vertices represent the complementary colour for each of the primary colours. The main
diagonal of the cube, with equal amounts of each primary represents the gray levels. The
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end at the origin of the diagonal represents black (0, 0, 0) and other end represents white

(1,1,1).
G
Green
{0,1,0) Yellow
Cyan (1.1.0)
(0,1,1)
White
7111
Black { » A\
000" N CR
Red
(1,0,0)
Blue Magenta
(0.0.1) (1,0,1)
Gray
B scale
Fig. 10.39 The RGB cube
y Each colour point within the
bounds of the cube is represented as
09 |

0.1B02 03 04 05 06 07 08

X

Fig. 10.40 Colour gamut for CIE standard RGB primaries

10.10.4 CMY Colour Model

the triple (R, G, B), where value for R,
G, B are assigned in the range from 0
to 1. As mentioned earlier, it is an
additive model. Intensities of the
primary colours are added to get the
resultant colour. Thus, the resultant
colour C, is expressed in RGB
component as

C, = RR+GG + BB

The RGB chromaticity
coordinates for the CIE RGB colour
model as given as R (0.735, 0.265), G
(0.274, 0.717), B (0.167, 0.009). The
Fig. 10.40 shows the colour gamut for
the CIE standard RGB primaries.

In-this model cyan, magenta and yellow colours are used as a primary colours. This
model is used for describing colour output to hard-copy devices. Unlike video monitor,
which produce a colour pattern by combining light from the screen phosphors, hard-copy
devices such as plotters produce a colour picture by coating a paper with colour pigments.
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The subset of the Cartesian coordinate system for the CMY model is the same as that for
RGB except that white (full light) instead of black (no light) is at the origin. Colours are
specified by what is removed or subtracted from white light, rather than by what is added to
blackness. We know that, cyan can be formed by adding green and blue light. Therefore,
when white light is reflected from cyan coloured ink, the reflected light does not have red
component. That is, red light is absorbed or subtracted, by the ink. Similarly, magenta ink
subtracts the green component from incident light, and yellow subtracts the blue

component. Therefore, cyan, magenta, and yellow are said to be complements of red, green
and bluce respectively. .

The Fig. 10.41 shows the cube

M) ' representation for CMY model
Asshowninthe Fig. 10.41, point (1,1,
Magenta 1) represents black, because all
Blue components of the incident light are
Red - _ ' subtracted. The point (0, 0, 0), the origin
a

represents  white light. The main
diagonal represents equal amount of
White c primary colours, thus the gray colours. A
Cyan combination of cyan and yellow
produces green light, because the red
» and blue components of the incident
Y light are absorbed. Other colour
combinations are obtained by a similar
subtractive process.

Yellow Green

Fig. 10.41 The CMY cube

It is possible to get CMY representation from RGB representation as follows

C 1 R
M =11|-|G
Y 1 B

The unit column vector is the RGB representation for white and the CMY representation
for black. The conversion from RGB to CMY is then can be given as

'R] [1] [C
G|=|1]-|™m
B| [1] |Y

10.10.5 HSV Colour Model

We know that RGB and CMY models which we have seen are hardware oriented model.
In contrast, HSV colour model is user oriented. It uses colour descriptions that have a more
intuitive appeal to a user. The colour specification in HSV model can be given by selecting a
spectral colour and the amounts of white and black that are to be added to obtain different
shades, tints, and tones. This model uses three colour parameter : hue (H), saturation (S),
and value (V). Hue distinguishes among colours such as red, green, purple and yellow.
Saturation refers to how. far colour is from a gray of equal intensity. For example, red is

R N
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Green Yellow

Cyan

Black

Fig. 10.42 The HSV hexcone

G Green

B R
Magenta

RGB color cube Color hexagon

(a (b)

‘ Cyan Yellow

Blue Red

Fig. 10.43 Top of hexcone

highly saturated whereas pink is
relatively unsaturated. The value
V indicates the level of brightness.

This model uses cylindrical
coordinate system, and the subset
of the space within which model is
defined is a hexcone, or six-sided
pyramid, as shown in the
Fig. 10.42.

The top of the hexcone is
derived from the RGB cube. If we
imagine viewing the cube along
the main diagonal from the white
vertex to the origin (black), we see
an outline of the cube that has the
hexagon shape shown in Fig. 10.43.
This boundary of cube is used as a
top if hexcone and it represents
various hues.

Hue, or H, is measured by the
angle around the vertical axis, with
red at 0°, green at 120°and so on as
shown in the Fig. 1042
Complementary colours in the
HSV  hexcone are 180° apart
saturation parameter varies from O
to 1. Its value is the ratio ranging
from 0 on the center line (V axis) to
1 on the triangular sides of the
hexcone. The value V varies from 0
at the apex of the hexcone to 1 at
the top. The apex represents black.

At the top of the hexcone, colours have their maximum intensity. WhenV=1and 5 =1, we
have the pure hues. For example, pureredisat H=0, V=1andS=1, pure greenisat H =120,
V=1andS=1, pureblueisat H=240,V =1 and S =1 and so on. The required colour can be
obtained by adding either white or black to the pure hue. Black can be added to the selected
hue by decreasing the setting for V while S is held constant. On the other hand, white can be
added to the selected hue by decreasing S while keeping V constant. To add some black and
some white we have to decrease both V and S. The point S=0 and V = 1 we have white
colour. The intermediate values of V for S = 0 (on the center line) are gray shades. Thus,
when S = 0, the value of H is irrelevant. When S is not zero, H is relevant. At the apex V
coordinate is 0. At this point, the values of H and S are irrelevant.
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Vv Fig. 10.44 shows the cross sectional

Tints Pure Hue plane of the HSV hexcone. This plane
# (S=1,v=1) represents the colour concepts
associated with the terms shades, tints
Tones and tones. As shown in Fig. 10.44, we
can add to

White

Grays \ sh * black colour to pure hue to produce
ades different shades of the colour.

* white colour to pure hue to produce
—»S different tints of the colour.

* both white and black colours to

Fig. 10.44 Cross sectional plane of the HSV showing pure hue to produce tones of the
tints, tones and shades colour.

10.10.6 HLS Colour Model

Black ,

L(lightness)

L=1(white)

Gray scale

H (Hue Angle)

Saturation

Fig. 10.45 Double-hexcone HLS colour model
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Another model based on intuitive colour parameters is the HLS colour model used by
Tektronix. The three colour parameters in this model are : hue (H), lightness (L.) and
saturation (S). It is represented by double hexcone, as shown in the Fig. 10.45.

The hue specifies the angle around the vertical axis of the double hexcone. In this model,
H = 0°corresponds to blue. The remaining colours are specified around the perimeter of the
hexcone in the same order as in the HSV model. Magneta is at 60°, red is at 120°, and yellow is
located at H = 180° Again, complementary colours are 180° apart on the double hexcone.

The vertical axis in this model represents the lightness, L. At . = 0, we have black and at
L =1, we have white. In between value of L we have gray levels. The saturation parameters S
varies from 0 to 1 and it specifies relative purity of a colour.

At S =0, we have the gray scale and atS=1and L = 0.5, we have maximum saturated
(pure) hue. As S decrease, the hue saturation decreases i.e. hue becomes less pure.

In HL.S model a hue can be selected by selecting huc angle H, and the desired shade, tint,
or tone can be obtained by adjusting L and S. The colours can be made lighter by increasing L
and can be made darker by decreasing L. The colours can be moved towards gray by
decreasing S. '

Review Questions

—

. Define : diffuse illumination, diffuse reflection and coefficient of reflection.

. Explain the Lambert's cosine law.

. What is diffused reflection ? Give the illumination model that incorporate this reflection.
. What is specular reflection ? Give the illumination model that incorporate this reflection.
. Derive the illumination model with combine diffuse and specular reflections.

. Describe the Phong's illumination model.

. What is halfway vector ? Where it is used ?

. Explain constant intensity shading algorithm.

O N N e LN

. Explain Gouraud shading algorithm ? Discuss its advantages and disadvantages.

—_
o

. Explain Phong shading model. Give its merits and demerits.

—
—

. What is halftoning ? Explain the halftone shading.

—
N

. What is a matchband effect ?

13. Compare Gouraud shading and Phong’s shading,.

14. Write a short note on transparency

15. What is refraction effect ?

16. Write a short note on shadows.

17. Write a note on visible surface ray tracing.

18. Discuss the properties of light.

19. Define chromaticity, complementary colours, colour gamut and primary colours.

21. Draw and explain the CIE chromaticity diagram.
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22. Explain the usefulness of CIE chromaticity diagram with examples.
23. Explain RGB colour model.

24. Explain CMY colour model.

25. Explain HSV colour model.

26. Define hue, saturation and value.

27. Explain HLS colour model.

University Questions

1. Develop an illumination model to consider ambient light, specular and diffuse reflections.
(Dec-96, Dec-2000, May-2000, Dec-2001)
2. Explain the Phong shading technique and compare this with the Gourand shading technique.
{Dec-96, Dec-2000)

3. What do you mean by the illumination model ? Develop a suitable illumination model to
consider specular and diffused reflection. (May-97)

4. Explain the Gourand shading method for shading. State its advantages and disadvantages.
; (May-97)
5. Write a detailed note on colour models (May-97, Dec-97, May-2000)

6. What is an illumination model ? Develop an illumination model to consider ambient light,
specular reflection and diffused reflection. {Dec-97)

7. Explain the algorithm for Phong shading and Gaurand shading. List its advantages over the
other. (Dec-97)

8. Write a detailed note on Halftoning and Dithering techniques. (May-98, Dec-2000, May-2002)

9. What is the purpose of illumination mode ? Give the classification of light sources. Whether
reflection depends upon the surface characteristics, explain in short. (May-98)

10. Explain the method of Gouraud shading and Phong shading. State relative merits. (Dec-98)

11. How the pattern of black and white are used to give impression of intermediate

intensities ? Explain the method. (Dec-98)
12. How is shading done? Describe one method. (May-99)
13. Explain the methods of speeding up Phong, shading technique. (Dec-99)

14. Compare and Contrast Gouraud shading technique with Phong shading technique.

(Dec-99, May-2003)
15. State and explain the features of Phong illumination model. (Dec-99)
16. Describe Gourand shading technique in pseudocode. (Dec-99)

17. Explain Gourand Shading method, Discuss its advantages and disadvantages over the

Phong technique. I\ ‘??_\ (May-2000)
. 1 ' ‘ -2000
18. Write a detailed note on‘colour rep&\s ““tko . \ \\ (Dec-2000)

19. Explam phong illumination model in de| \l\ ) X (May-2001)

20. Explain advantages and dlsadvantages of R AN xading, Phong shading and Ray
tracing method. . (May-2001)
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21. Write a detailed note on RGB colour model. (May-2001, Dec-2001, May-2002)
22. Discuss the merits and demerits of constant shading method, gouraud shading method,
phong shading method and ray casting method. {Dec-2001)
23. Write a short note on diffuse reflection ilumination model. (May-2002)
24. llustrate HSV colour model and RGB colour model. (May-2003)
25. Write a short note on dithering techniques. (May-2003)
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